[1] 張丹, 李彩英, 高不郎, 等. 顱內(nèi)動脈瘤血流動力學(xué)發(fā)病機(jī)制研究進(jìn)展[J]. 介入放射學(xué)雜志, 2017, 26(4):378-382.
Zhang D, Li CY, Gao BL, et al. Advances in the research of hemodynamics of the pathogenesis of intracranial aneurysms[J]. Journal of Interventional Radiology, 2017, 26(4):378-382.
[2] Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis[J]. AJNR. American Journal of Neuroradiology, 2014, 35(7):1254-1262.
[3] Brinjikji W, Zhu YQ, Lanzino G, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis[J]. AJNR. American Journal of Neuroradiology, 2016, 37(4):615-620.
[4] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture[J]. Stroke, 2011, 42(1): 144-152.
[5] 魏社鵬,趙繼宗. 未破裂顱內(nèi)動脈瘤的研究進(jìn)展[J]. 國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志, 2017, 44(3): 311-315.
[6] 崔剛, 翟寶進(jìn), 焦德讓. 膠原蛋白基因與顱內(nèi)動脈瘤[J]. 國際腦血管病雜志, 2008, 16(10):791-793.
Cui G, Zhai BJ, Jiao DR. Collagen genes and intracranial aneurysm[J]. 國際腦血管病雜志, 2008, 16(10): 791-793.
[7] 胡文超. 動脈血管力學(xué)模型及損傷機(jī)制研究[D]. 重慶: 重慶大學(xué), 2016.
Hu WC. Study on mechanical model and damaged mechanism of arterial vessel[D]. Chongqing: Chongqing University, 2016.
[8] 張星, 劉建民, 黃清海. 腦動脈瘤血流動力學(xué)數(shù)值模擬研究及其臨床意義[J]. 介入放射學(xué)雜志, 2008, 17(12):898-902.
Zhang X, Liu JM, Huang QH. Numerical virtual studies and clinical significance of the hemodynamics for cerebral aneurysms[J]. Journal of Interventional Radiology, 2008, 17(12): 898-902.
[9] 丁金立, 李宏軍, 張巖巖, 等. 個性化肝癌患者肝臟相關(guān)動脈血管的三維容積重建及其應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2016, 35(6): 620-625.
Ding JL, Li HJ, Zhang YY, et al. Three-dimensional volume reconstruction of hepatic arteries for individual HCC patientsand its application[J]. Beijing Biomedical Engineering, 2016, 35(6): 620-625.
[10] 田雪濤, 卜雄建, 姬中慶. 顱內(nèi)未破裂與破裂合并冠心病患者動脈瘤血流動力學(xué)數(shù)值模擬研究[J]. 國際心血管病雜志, 2017, 44(S): 229.
[11] 沈雷, 張永巍, 呂楠, 等. 癥狀性大腦中動脈粥樣硬化性狹窄的血流動力學(xué)數(shù)值模擬研究[J]. 中國卒中雜志, 2016, 11(1): 54-60.
Shen L, Zhang YW, Lyu N, et al. Computational fluid dynamic study of symptomatic middle cerebral artery atherosclerotic stenosis[J]. Chinese Journal of Stroke, 2016, 11(1): 54-60.
[12] 曹強(qiáng). 多層面螺旋CTA三維重建技術(shù)在評價腦動脈瘤中的應(yīng)用——與DSA對比研究[D]. 沈陽:中國醫(yī)科大學(xué), 2003.
Cao Q. Three dimensional multislice CT during angiography in the evaluation of cerebral aneurysms—a comparative study with intraarterial digital subtraction angiography[D]. Shenyang: China Medical University, 2003. [13] Vo? S, Gla?er S, Hoffmann T, et al. Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness[J]. Computational and Mathematical Methods in Medicine,2016, 2016: 9854539.
[14] Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR. American Journal of Neuroradiology,2014, 35(10):1849-1857.
[15] Zhang Y, Jing L, Liu J, et al. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms[J]. Journal of NeuroInterventional Surgery, 2016, 8(8): 808-812.
[16] 張明超. 顱內(nèi)動脈瘤計算流體動力學(xué)研究[D]. 太原: 太原理工大學(xué), 2015.
Zhang MC. Computational fluid dynamics analysis in the intracranial aneurysm[D]. Taiyuan: Taiyuan University of Technology, 2015. [17] 李響, 楊潔, 賈凌云, 等. 大腦中動脈重度狹窄或閉塞性病變腦膜支代償對顱外段頸內(nèi)動脈血流動力學(xué)的影響[J]. 中華醫(yī)學(xué)超聲雜志(電子版), 2017, 14(6): 433-440.
Li X, Yang J, Jia LY, et al. The effect of leptomeningealanastomoseson hemodynamic changes of extracranial internal carotid artery in middle cerebral artery severe stenosis and occlusion disease[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(6): 433-440.
|