51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
骨科機(jī)器人輔助微創(chuàng)腰椎內(nèi)固定術(shù)臨床效果觀察

Clinical effect for orthopaedic robot assisted minimally invasive lumbar internal fixation surgery

作者: 黃潔  韓冰  劉稷軒  施嶄  高新雪  閆碩  王豫  田偉 
單位:北京積水潭醫(yī)院脊柱外科(北京 100035) 北京航空航天大學(xué)生物與醫(yī)學(xué)工程學(xué)院(北京 100191)
關(guān)鍵詞: 骨科機(jī)器人;  護(hù)理;  腰椎內(nèi)固定術(shù);  椎弓根螺釘置入;  位置精準(zhǔn)性;  早期下地 
分類號:R318
出版年·卷·期(頁碼):2020·39·2(145-151)
摘要:

目的 比較骨科機(jī)器人輔助微創(chuàng)腰椎內(nèi)固定術(shù)和傳統(tǒng)開放腰椎內(nèi)固定術(shù)的手術(shù)和護(hù)理效果差異,并從術(shù)后護(hù)理角度對患者術(shù)后早期下地時間進(jìn)行探討。方法 本研究為前瞻性隨機(jī)對照研究,納入2019年4月1日至7月30日收入北京積水潭醫(yī)院脊柱外科行單節(jié)段腰椎手術(shù)的患者。采用隨機(jī)數(shù)表法將符合納排標(biāo)準(zhǔn)的患者分為機(jī)器人輔助微創(chuàng)內(nèi)固定術(shù)組和傳統(tǒng)開放內(nèi)固定術(shù)組。術(shù)后首次下地時間在機(jī)器人輔助微創(chuàng)腰椎內(nèi)固定術(shù)組縮短至術(shù)后4 h,而傳統(tǒng)開放腰椎內(nèi)固定術(shù)組患者仍保持術(shù)后24 h。評價指標(biāo)包括Gertzbein-Robbins螺釘分類標(biāo)準(zhǔn)、首次下地活動持續(xù)時長、圍手術(shù)期疼痛評分、手術(shù)時間、術(shù)中出血量、術(shù)后住院時間和術(shù)后并發(fā)癥等。結(jié)果 本研究共納入患者60名,平均年齡(54.58±7.04)歲,其中男性患者33名(55%)。兩組患者在基線信息方面無顯著性差異。螺釘位置可接受率及優(yōu)良率方面,機(jī)器人輔助微創(chuàng)內(nèi)固定術(shù)組均優(yōu)于傳統(tǒng)開放內(nèi)固定術(shù)組。圍術(shù)期護(hù)理方面,術(shù)后4 h及術(shù)后24 h的疼痛評分采用視覺模擬評分法(visual analog scale, VAS),機(jī)器人輔助微創(chuàng)內(nèi)固定術(shù)組顯著優(yōu)于傳統(tǒng)開放內(nèi)固定術(shù)組。此外,機(jī)器人輔助微創(chuàng)內(nèi)固定術(shù)組比傳統(tǒng)開放內(nèi)固定術(shù)組具有更長的首次下地活動持續(xù)時長。在手術(shù)時間、術(shù)中出血量和術(shù)后住院時間方面,機(jī)器人輔助微創(chuàng)內(nèi)固定術(shù)組也存在明顯優(yōu)勢。結(jié)論 骨科機(jī)器人輔助微創(chuàng)腰椎內(nèi)固定術(shù)能夠提高椎弓根螺釘置入的精準(zhǔn)性。在護(hù)理方面,術(shù)后早期下地活動能夠提高患者圍手術(shù)期體驗,同時并不增加并發(fā)癥的發(fā)生率。

Objective To compare the surgery and nursing effects between orthopaedic robot assisted minimally invasive lumbar internal fixation and conventional open lumbar internal fixation, and to explore the early ambulation time after surgery from the viewpoint of postoperative nursing. Methods This prospective randomized controlled trial enrolled patients underwent single-segment lumbar spine surgery in Spine Department of Jishuitan Hospital between April 1, 2019 and July 30, 2019. Patients were divided into robot assisted minimally invasive internal fixation group and traditional open internal fixation group according to the random number table. The first-time ambulation in robot assisted minimally invasive internal fixation group was 4 hours after surgery, while in traditional open internal fixation group was 24 hours after surgery. The results included the Gertzbein-Robbins screw classification criteria, the length of time for the first-time ambulation after surgery, the perioperative pain scores, the operation time, the intraoperative blood loss, the postoperative hospital stay and perioperative complications. Results A total of 60 patients were enrolled in this study, with an average age of (54.58 ± 7.04) years, including 33 (55%) male patients. There were no significant differences in baseline characteristics between these two groups. The robot assisted minimally invasive lumbar internal fixation group was superior to the conventional open lumbar internal fixation group in screw position acceptance rate. The pain scores of the robot assisted minimally invasive lumbar internal fixation group at 4 hours and 24 hours after surgery were significantly better than those of conventional open lumbar internal fixation group. At the same time, robot assisted minimally invasive lumbar internal fixation group had an earlier and longer duration of first-time ambulation after surgery. The robot assisted minimally invasive lumbar internal fixation group was significantly superior to the conventional open lumbar internal fixation group in terms of operation time, intraoperative blood loss and postoperative hospital stay. Conclusions Orthopaedic robot assisted minimally invasive lumbar internal fixation can improve the accuracy of pedicle screw placement. Early ambulation after surgery can improve the perioperative experience of patients without increasing incidence of complications.

參考文獻(xiàn):

[1] Barnes AH, Eguizabal JA, Acosta FL, et al. Biomechanical pullout strength and stability of the cervical artificial pedicle screw[J]. Spine (Phila Pa 1976), 2009, 34(1): E16-E20.

[2]Dunlap BJ, Karaikovic EE, Park HS, et al. Load sharing properties of cervical pedicle screw-rod constructs versus lateral mass screw-rod constructs[J]. European Spine Journal, 2010, 19(5): 803-808.

[3]Gaines RW. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders[J]. Journal of Bone and Joint Surgery American volume, 2000, 82A (10): 1458-1476.

[4] Samdani A, Asghar J, Miyanji F, et al. Minimally invasive treatment of pediatric spinal deformity[J].Seminars in Spine Surgery, 2011,23(1) :72-75.

[5]Kosmopoulos V,Schizas C. Pedicle screw placement accuracy: a meta-analysis[J].Spine (Phila Pa 1976),2007,32(3): E111- E120.

[6]王長昇,林建華,許衛(wèi)紅,等.脊柱微創(chuàng)通道鏡系統(tǒng)輔助改良椎間孔腰椎椎間融合術(shù)治療腰椎退行性疾病[J].中國微創(chuàng)外科雜志, 2016, 16 (4): 340-343.

Wang CS, Lin JH, Xu WH, et al. Use of minimally invasive spinal channel endoscope system in modified transforaminal lumbar interbody fusion for lumbar degenerative disease[J].Chinese Journal of Minimally Invasive Surgery,2016,4(16): 340-343.

[7]高彬.急性脊柱創(chuàng)傷的診斷及微創(chuàng)手術(shù)治療的效果分析[J].解放軍預(yù)防醫(yī)學(xué)雜志, 2016, 34(5): 721-722, 729.

Gao B. Diagnosis and minimally invasive surgical treatment of acute spinal trauma[J].Journal of Prevention Medicine of Chinese People’s Liberation Army, 2016,34(5):721-722,729.

[8]田偉.CAMISS-脊柱損傷治療的趨勢[J].中華創(chuàng)傷骨科雜志,2012,14(3):185-187.

[9]田偉.我國醫(yī)用機(jī)器人的研究現(xiàn)狀及展望[J].骨科臨床與研究雜志,2018, 3 (4) :193-194.

[10]韓曉光,劉亞軍,范明星,等.骨科手術(shù)機(jī)器人技術(shù)發(fā)展及臨床應(yīng)用[J].科技導(dǎo)報,2017, 35 (10): 19-25.

Han XG, Liu YJ, Fan MX, et al. Development and clinical application of orthopaedic surgery robot technology[J].Science and Technology Review,2017, 35 (10): 19-25.

[11]范明星,劉亞軍,段芳芳,等. 機(jī)器人輔助胸腰椎椎弓根螺釘內(nèi)固定術(shù)的學(xué)習(xí)曲線和臨床意義[J].骨科臨床與研究雜志, 2018, 3 (4): 213-217.

Fan MX, Liu YJ, Duan FF, et al. Learning curve and clinical outcomes of robot assisted thoracolumbar pedicle screw fixation[J]. Journal of Clinical Orthopaedic and Research, 2018, 3(4): 213-217.

[12]茅劍平,張琦,范明星,等.機(jī)器人輔助與徒手置入椎弓根螺釘在經(jīng)椎間孔腰椎融合術(shù)中的對比研究[J].中國微創(chuàng)外科雜志,2019,19(6): 481-484, 489.

Mao JP, Zhang Q, Fan MX, et al. Comparation between robot-assisted and free hand technique in pedicle screw insertion in transforaminal lumbar interbody fusion surgery: a prospective cohort study[J].Chinese Journal of Minimally Invasive Surgery,2019,19(6): 481-484, 489.

[13]易偉林,梁斌,丘德贊,等.脊椎融合術(shù)后下肢深靜脈血栓形成的危險因素分析[J].中國矯形外科雜志,2018,26(1): 22-26.

Yi WL, Liang B, Qiu DZ, et al. Risk factors of early deep venous thrombosis in lower extremity after spinal fusion surgery[J].Orthopedic Journal of China,2018,26(1): 22-26.

[14]趙娟.內(nèi)科老年住院患者體位性低血壓的發(fā)生原因及護(hù)理干預(yù)對策[J].中國醫(yī)藥指南,2017,15(35): 274-275.

[15]Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo[J]. Spine, 1990, 15(1): 11-14.

[16]Tan SH, Teo EC, Chua HC. Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans[J]. European Spine Journal, 2004, 13(2): 137-146.

[17]Yuichiro G, Kosaku H, Shunichi T, et al. The pullout strength of pedicle screws following redirection after lateral wall breach or endplate breach[J]. Spine, 2016, 41 (15): 1218-1223.

[18]Nasser R, Yadla S, Maltenfort M, et al. Complications in spine surgery[J]. Journal of Neurosurgery Spine, 2010, 13(2): 144-157.

[19]朱金文,田建寧,王曉東,等.脊柱外科手術(shù)機(jī)器人引導(dǎo)治療胸腰椎骨折的療效[J].臨床骨科雜志, 2018,21(4): 404-408.

Zhu JW, Tian JN, Wang XD, et al. The efficacy of spine robot-assisted surgery for treatment of thoracolumbar fracture[J]. Journal of Clinical Orthopaedics, 2018,21(4): 404-408.

[20]張琦,范明星,劉亞軍,等.導(dǎo)航與機(jī)器人輔助頸椎螺釘內(nèi)固定術(shù)的臨床應(yīng)用[J].北京生物醫(yī)學(xué)工程,2019,38(5): 504-507, 550.

Zhang Q, Fan MX, Liu YJ, et al. Clinical application of cervical screw internal fixation under navigation and robot assistance[J].Beijing Biomedical Engineering,2019,38(5): 504-507, 550.

[21]Zamorano L, Li Q, Jain S, et al. Robotics in neurosurgery: state of the art and future technological challenges[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2004, 1(1): 7-22.

[22]田偉,范明星,劉亞軍.脊柱導(dǎo)航輔助機(jī)器人技術(shù)的現(xiàn)狀及遠(yuǎn)期展望[J]. 北京生物醫(yī)學(xué)工程, 2014, 33(5): 527-531, 544.

Tian W, Fan MX, Liu YJ. Current status and long-term prospects in spinal navigation robot technology[J]. Beijing Biomedical Engineering, 2014, 33(5): 527-531, 544.

[23]徐鵬,葛鵬,章仁杰,等.機(jī)器人輔助下椎弓根螺釘固定治療胸腰椎骨折[J]. 頸腰痛雜志, 2018, 39(6): 687-690.

Xu P, Ge P, Zhang RJ, et al. Effect of robot assisted pedicle screw fixation in the treatment of thoracolumbar fracture[J]. The Journal of Cervicodynia and Lumbodynia, 2018, 38(6): 687-690.

[24]Han XG, Tian W, Liu YJ, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. Journal of Neurosurgery Spine, 2019: 1-8.

[25] Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation[J]. Spine (Phila Pa 1976), 2012, 37(8): E496-E501.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]