51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于腦電信號的情感識別方法綜述

A survey of emotion recognition method based on EEG signals

作者: 孫中皋  薛全德  王新軍  黃曉理 
單位:遼寧師范大學(xué)物理與電子技術(shù)學(xué)院(遼寧大連 116029)
關(guān)鍵詞: 情感識別;  綜述;  腦電;  特征提取;  機器學(xué)習(xí) 
分類號:R318;TP391.4
出版年·卷·期(頁碼):2020·39·2(186-195)
摘要:

情感識別是讓計算機感知人類情感狀態(tài)從而進(jìn)行人機情感交互的關(guān)鍵技術(shù),已經(jīng)成為人工智能領(lǐng)域的研究熱點。計算機對人類情感的感知可分為“感”和“知”兩部分:“感”是指計算機對人類面部表情和語音等非生理信號以及外圍神經(jīng)和腦部電信號等生理信號的獲取;“知”是指計算機對獲取信號的識別和推斷。基于腦電信號的感知方法因其具有較高的識別率而成為情感識別最主要的手段之一,其主要步驟為腦電信號獲取、預(yù)處理、特征提取以及分類識別。本文對腦電情感識別方法中各步驟所涉及的研究方法進(jìn)行了歸納和總結(jié),介紹了腦電信號的采集和常用數(shù)據(jù)庫以及去除偽跡信號的預(yù)處理方法,從時域、頻域、時頻域和非線性動力學(xué)角度歸納了腦電信號的特征提取方法,總結(jié)了常用的機器識別分類的無監(jiān)督學(xué)習(xí)和有監(jiān)督學(xué)習(xí)方法,最后探討了腦電信號情感識別研究中存在的問題并展望了未來發(fā)展方向,以期為相關(guān)研究帶來一定的借鑒。

Emotion recognition is a key technology that allows computers to perceive the emotional state of human beings and thus engage in human-computer emotional interaction. It has become a research hotspot in the field of artificial intelligence. The perception of human emotions by computers can be divided into two parts: “sense” and “knowledge”. “Sense” refers to the acquisition of physiological signals such as human facial expressions and speech and other physiological signals such as peripheral nerves and brain electrical signals; "Knowledge" refers to the recognition and inference. Emotional recognition based on Electroencephalogram (EEG) has become the main research method because of its high recognition rate and its main steps are EEG acquisition, preprocessing, feature extraction and classification recognition. In this paper, the research methods involved in each step of EEG emotion recognition are summarized. The collection of EEG signals, common databases and preprocessing methods of removing artifacts are introduced. The feature extraction methods of EEG are summarized from the perspectives of time domain, frequency domain, time-frequency domain and nonlinear dynamics and the unsupervised learning and supervised learning methods of machine recognition classification are introduced. Finally, the paper discusses the existing problems in the research of emotion recognition of EEG signals and looks forward to the future development direction, in order to bring some reference for the related research.

參考文獻(xiàn):

[1] Sharon YT, Safiya UN. Emotions, technology, and design[M]. American: Academic Press, 2016.

[2] Mühl C, Allison B, Nijholt A, et al. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges[J]. Brain-Computer Interfaces, 2014, 1(2): 66-84.

[3] James W. What is an emotion[J]. Mind, 1884, 9(34): 188-205.

[4] Lange CG. The Emotions: A psychophysiological study[J]. The Emotions, 1885: 33-90.

[5] Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory[J]. The American Journal of Psychology, 1927, 39(1/4): 106-124.

[6] Papez JW. A proposed mechanism of emotion[J]. Archives of Neurology and Psychiatry, 1937, 38(4): 725-743.

[7] Maclean PD. Psychosomatic disease and the “Visceral Brain” recent developments bearing on the papez theory of emotion[J]. Psychosomatic Medicine, 1949, 11(6): 338-353.

[8] Yin Z, Zhao M, Wang Y, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 93-110.

[9] 賁晛燁, 楊明強, 張鵬, 等. 微表情自動識別綜述[J]. 計算機輔助設(shè)計與圖形學(xué)學(xué)報, 2014, 26(9): 1385-1395.

Ben XY, Yang MQ, Zhang P, et al. Survey on automatic micro expression recognition methods[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(9): 1385-1395.

[10] Kaur B, Singh D, Roy PP. EEG based emotion classification mechanism in BCI[J]. Procedia Computer Science, 2018, 132: 752-758.

[11] Anderson K, McOwan PW. A real-time automated system for the recognition of human facial expressions[J]. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 2006, 36(1): 96-105.

[12] 繆裕青,鄒巍,劉同來,等. 基于參數(shù)遷移和卷積循環(huán)神經(jīng)網(wǎng)絡(luò)的語音情感識別[J]. 計算機工程與應(yīng)用, 2019, 55(10): 135-140, 198.

Miao YQ, Zou W, Liu TL, et al. Speech emotion recognition model based on parameter transfer and convolutional recurrent neural network[J]. Computer Engineering and Applications, 2019, 55(10): 135-140, 198.

[13] Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: analysis of affective physiological state[J]. IEEE Transactions on Pattern Analysis and Machined Intelligence, 2001, 23(10): 1175-1191.

[14] Jie X, Cao R, Li L. Emotion recognition based on the sample entropy of EEG[J]. Bio-Medical Materials and Engineering, 2014, 24(1): 1185-1192.

[15] Kaur B, Singh D, Roy PP. A novel framework of EEG-based user identification by analyzing music-listening behavior[J]. Multimedia Tools and Applications, 2017, 76(24): 25581-25602.

[16] Saini R, Kaur B, Singh P, et al. Don’t just sign use brain too: A novel multimodal approach for user identification and verification[J]. Information Sciences, 2018, 430-431: 163-178.

[17] Koelstra S, Mühl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31.

[18] Soleymani M, Lichtenauer J, Pun T, et al. A multimodal database for affect recognition and implicit tagging[J].  IEEE Transactions on Affective Computing, 2012, 3(1): 42-55.

[19] Zheng WL, Lu BL. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175.

[20] Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Instruction manual and affective ratings, Technical Report A-8. Gainesville: The Center for Research in Psychophysiology, University of Florida, 2008.

[21] Bradley MM, Lang PJ. International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings. Technical report B-2. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida, 1999.

[22] Dai YX, Wang X, Zhang PB, et al. Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition[J]. Multimedia Tools and Applications, 2018, 77(17): 21967-21994.

[23] Yu XY, Chum P, Sim KB. Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(3): 1498-1502.

[24] Artoni F, Delorme A, Makeig S. Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition[J]. NeuroImage, 2018, 175: 176-187.

[25] Liang Z, Oba S, Ishii S. An unsupervised EEG decoding system for human emotion recognition[J]. Neural Networks, 2019, 116: 257-268.

[26] Zhang Q, Lee M. A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals[J]. Neurocomputing, 2010, 73(16-18): 3264-3272.

[27] 聶聃, 王曉鞲, 段若男, 等. 基于腦電的情緒識別研究綜述[J]. 中國生物醫(yī)學(xué)工程學(xué)報, 2012, 31(4): 595-606.

Nie D, Wang XW, Duan RN, et al. A survey on EEG based emotion recognition[J]. Chinese Journal of Biomedical Engineering, 2012, 31(4): 595-606.

[28] Zouridakis G, Patidar U, Padhyen NS, et al. Spectral power of brain activity associated with emotion—a pilot MEG study[C]// Proceedings of the 17th International Conference on Bio-magnetism Advances in Biomagnetism-BIOMAG2010, IFMBE Proceedings. Dubrovnik, Croatia: Springer, 2010, 28(1): 354-357.

[29] Xing BX, Zhang H, Zhang K, et al. Exploiting EEG signals and audiovisual feature fusion for video emotion recognition[J]. IEEE Access, 2019, 7: 59844-59861.

[30] Wu N, Jiang H, Yang G. Emotion recognition based on physiological signals[J]. Advances in Brain Inspired Cognitive Systems, 2012, 7366: 311-320.

[31] 裴一飛, 楊淑娟.運動想象腦電信號算法研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(2): 208-214.

Pei YF, Yang SJ. Research progress on motor imagery EEG signals[J]. Beijing Biomedical Engineering, 2018, 37(2): 208-214.

[32] 張迪, 萬柏坤, 明東. 基于生理信號的情緒識別研究進(jìn)展[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2015, 32(1): 229-234.

Zhang D, Wan BK, Ming D. Research progress on emotion recognition based on physiological signals[J].Journal of Biomedical Engineering, 2015, 32(1): 229-234.

[33] 李立, 曹銳, 相潔. 腦電數(shù)據(jù)近似熵與樣本熵特征對比研究[J]. 計算機工程與設(shè)計, 2014, 35( 3): 1021-1026.

Li L, Cao R, Xiang J. Comparative study of approximate entropy and sample entropy based on characterization of EEG[J]. Computer Engineering and Design, 2014, 35(3): 1021-1026.

[34] Konstantinidis EI, Frantzidis CA, Pappas C, et al. Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by graphic processor units[J]. Computer Methods and Programs in Biomedicine, 2012, 107(1): 16-27.

[35] Liu Y, Sourina O, Nguyen MK. Real-time EEG-based emotion recognition and its applications[J]. Transactions on Computational Science XⅡ, 2011, 6670: 256-277.

[36] 張冠華, 余旻婧, 陳果,等. 面向情緒識別的腦電特征研究綜述[J]. 中國科學(xué):信息科學(xué), 2019, 49(9): 1097-1118.

Zhang GH, Yu MJ, Chen G, et al. A review of EEG features for emotion recognition[J]. Scientia Sinica Informationis, 2019, 49(9): 1097-1118.

[37] 王亞真, 張新峰, 胡廣芹,等. 基于支持向量機的中醫(yī)舌圖像質(zhì)量評價研究[J].北京生物醫(yī)學(xué)工程, 2015, 34(6): 551-557.

Wang YZ, Zhang XF, Hu GQ, et al. Study of tongue image quality assessment based on SVM in traditional Chinese medicine[J]. Beijing Biomedical Engineering, 2015, 34(6): 551-557.

[38] Liu YJ, Yu MJ, Zhao GZ, et al. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Transactions on affective Computing, 2017, 99: 1-14.

[39] Nie D, Wang XW, Shi LC, et al. EEG-based emotion recognition during watching movies[C]//5th International Conference on Neural Engineering. Cancun: IEEE Press, 2011: 667-670.

[40] Estepp JR, Klosterman SL, Christensen JC. An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks[C]//Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, Massachusetts: IEEE Press, 2011: 6552-6555.

[41] 陳繼華, 李嵐, 錢坤喜. 基于多生理信號的情緒初步識別[J]. 生物醫(yī)學(xué)工程研究, 2006, 25(3): 141-146.

Chen JH, Li L, Qian KX. Emotion recognition by physiological signals[J]. Journal of Biomedical Engineering Research, 2006, 25(3): 141-146.

[42] Tipping ME. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1:211-244.

[43] 李志文, 蔡先發(fā), 韋佳, 等. 基于PCA和LDA方法的腫瘤基因表達(dá)譜數(shù)據(jù)分類[J].北京生物醫(yī)學(xué)工程, 2014, 33(1): 47-51.

Li ZW, Cai XF, Wei J, et al. Classification of cancer gene expression profile based on PCA and LDA[J]. Beijing Biomedical Engineering, 2014, 33(1): 47-51.

[44] Agrafioti F, Hatzinakos D, Anderson A. ECG pattern analysis for emotion detection[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 102-115.

[45] Kaur B, Singh D, Roy PP. A novel framework of EEG-based user identification by analyzing music-listening behavior[J]. Multimedia Tools and Applications, 2017, 76(24): 25581-25602.

[46] Zhang Y, Ji XM, Zhang SH. An approach to EEG-based emotion recognition using combined feature extraction method[J]. Neuroscience Letters, 2016, 633: 152-157.

[47] 魏琛, 陳蘭嵐, 張傲. 基于集成卷積神經(jīng)網(wǎng)絡(luò)的腦電情感識別[J]. 華東理工大學(xué)學(xué)報(自然科學(xué)版), 2019, 45(4): 614-622.

Wei C, Chen LL, Zhang A. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(4): 614-622.

[48] Soleymani M, Lichtenauer J, Pun T, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computing, 2012, 3(1):42-55.

[49] Taran S, Bajaj V. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method[J]. Computer Methods and Programs in Biomedicine, 2019, 173: 157-165.

[50] AbdelAal MA, Alsawy AA, Hefny HA. EEG-based emotion recognition using a wrapper-based feature selection method[C] // International Conference on Advanced Intelligent Systems and Informatics. Cairo, Egypt: AISI, 2018, 639: 247-256.

[51] Gupta A, Sahu H, Nanecha N, et al. Enhancing text using emotion detected from EEG signals[J]. Journal of Grid Computing, 2019,17(2): 324-340.

[52] Vijayan AE. EEG-based emotion recognition using statistical measures and auto-regressive modeling[C]// IEEE International Conference on Computational Intelligence & Communication Technology (CICT 2015). Ghaziabad, India:IEEE Press, 2015: 587-591.

[53] Mehmood RM, Lee HJ. Towards emotion recognition of EEG brain signals using Hjorth parameters and SVM[J].  Advanced Science and Technology Letters, 2015, 91: 24-27.

[54] Gupta V, Chopda MD, Pachori RB. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals[J]. IEEE Sensors Journal, 2019, 19(6): 2266-2274.

[55] Chen JX, Zhang PW, Mao ZJ, et al. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks[J]. IEEE Access, 2019, 7: 44317-44328.

[56] Zhang T, Zheng W, Cui Z, et al. Spatial-temporal recurrent neural network for emotion recognition[J]. IEEE Transactions on Cybernetics, 2018, 49(3): 839-847.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]