51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于系統(tǒng)矩陣的磁粒子成像重構(gòu)研究進展

Research progress on reconstruction for magnetic particle imaging based on system matrix

作者: 陳曉君  韓瀟  王曉林李廣飛  唐曉英 
單位:北京理工大學生命學院(北京100081)
關(guān)鍵詞: 醫(yī)學影像;  磁粒子成像;  系統(tǒng)矩陣;  重構(gòu);  正則化 
分類號:R318
出版年·卷·期(頁碼):2020·39·2(196-202)
摘要:

磁粒子成像(magnetic particle imaging, MPI)是一種新型、前沿的層析成像方式,對具有生物相容性的超順磁納米粒子進行濃度分布成像,具有高靈敏度、高分辨率、無輻射等特征。基于系統(tǒng)矩陣的MPI重構(gòu)是MPI重構(gòu)研究的重要分支,較X-空間(X-Space)法具有更精確的重建效果。本文簡要介紹了MPI的成像及重構(gòu)原理;重點闡述了基于系統(tǒng)矩陣的MPI重構(gòu)研究現(xiàn)狀,對比分析了系統(tǒng)矩陣的測量與模型構(gòu)建方法,歸納總結(jié)了吉洪諾夫正則化、LASSO算法、非負的融合套索模型與聯(lián)合重建法的優(yōu)劣;最后針對公開的數(shù)據(jù)庫提出合理的頻率篩選、系統(tǒng)矩陣稀疏模型構(gòu)建、正則化方法探索改進的幾點研究建議,以期為MPI的重構(gòu)研究提供一定的方法參考,更好地促進未來磁粒子成像在臨床醫(yī)學中的良好應用。

Magnetic particle imaging is an emerging and frontier tomographic imaging modality that determines the concentration of biocompatible superparamagnetic nanoparticles with high sensitivity, high spatial resolution and no radiation. MPI reconstruction based on system matrix is an important branch of MPI reconstruction research, and has more accurate reconstruction effect than X-Space method. This paper briefly introduces the imaging principle of MPI and its reconstruction theory, and focuses on the MPI reconstruction progress based on system matrix, analyzes and compares the different methods for system matrix construction of measurement and model, summarizes the advantages and disadvantages of Tikhonov regularization method, LASSO algorithm, non-negative fused lasso model and joint reconstruction method. Finally, the paper proposes certain research suggestions for the open database, such as reasonable frequency screening, system matrix sparse model and regularization improvement method, expecting that this review may provide a convenience for researchers in MPI reconstruction and promote the future application of MPI in clinical medicine.

參考文獻:

[1] 劉豐偉,李漢軍,張逸鶴,等.人工智能在醫(yī)學影像診斷中的應用[J].北京生物醫(yī)學工程,2019,38(2): 206-211.

Liu WF, Li HJ, Zhang YH, et al. Application of artificial intelligence in medical imaging diagnosis [J]. Beijing Biomedical Engineering, 2019, 38(2): 206-211.

[2] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles [J]. Nature, 2005, 435(7046):1214-1217.

[3] Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging[J]. Physics in Medicine and Biology, 2007, 52(21):6363-6374.

[4] Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging[J]. Physics in Medicine and Biology, 2008, 53(6): N81-N84.

[5] Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging[J]. Physics in Medicine and Biology, 2009, 54(5): L1–L10.

[6] Panagiotopoulos N, Duschka RL, Ahlborg M, et al. Magnetic particle imaging: current developments and future directions[J]. International Journal of Nanomedicine, 2015, 10: 3097-3114.

[7] Arami H, Teeman E, Troksa A, et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles[J]. Nanoscale, 2017, 9(47): 18723-18730.

[8] Rahmer J, Antonelli A, Sfara C, et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection[J]. Physics in Medicine and Biology, 2013, 58(12): 3965-3977.

[9] Knopp T, Buzug TM. Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012.

[10] Knopp T, Sattel TF, Biederer S, et al. Model-based reconstruction for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 12-18.

[11] Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1581-1590.

[12] 呂龍龍. 一維磁粒子成像系統(tǒng)性能測試分析及其成像研究[D]. 西安:西安電子科技大學, 2014.

Lyu LL. One-dimensional magnetic particle imaging system performance analysis and ite imaging studies[D]. Xi’an: Xidian University, 2014.

[13] Rahmer J, Weizenecker J, Gleich B, et al. Analysis of a 3D system function measured for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2012, 31(6):1289-1299.

[14] Grafe K, Gladiss A, Bringout G, et al. 2D images recorded with a single-sided magnetic particle imaging scanner[J] IEEE Transactions on Medical Imaging, 2016, 35(4):1056-1065.

[15] 謝迪. 磁性粒子成像重建算法研究[D]. 武漢: 華中科技大學, 2013.

Xie D. Research on the reconstruction algorithm in magnetic particle imaging[D]. Wuhan: Huazhong University of Science&Technology, 2013.

[16] Szwargulski P, Moddel M, Gdaniec N, et al. Efficient joint image reconstruction of multi-patch data reusing a single system matrix in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 932–944.

[17] Knopp T, Biederer S, Sattel T, et al. Trajectory analysis for magnetic particle imaging[J]. Physics in Medicine and Biology, 2008, 54(2): 385-397.

[18] Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105009.

[19] Schimiester L, Moddel M, Erb W, et al. Direct image reconstruction of lissajous-type magnetic particle imaging data using chebyshev-based matrix compression[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 671-681.

[20] 謝迪,張樸,程晶晶.基于磁性粒子成像技術(shù)的一維建模仿真研究[J].計算機仿真, 2013, 30(9): 410-414.

Xie D, Zhang P, Cheng JJ. Simulation research on one-dimensional magnetic particle imaging[J]. Computer Simulation, 2013, 30(9):410-414.

[21] Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers[J]. IEEE Transactions on Medical Imaging, 2015, 34(5): 1077–1084.

[22] Kluth T. Mathematical models for magnetic particle imaging[J]. Inverse Problems, 2018, 34(8): 1-27.

[23] Vogel P, Rückert MA, Jakob PM, et al. μMPI—Initial experiments with an ultrahigh resolution MPI[J]. IEEE Transactions on Magnetics, 2015, 51(2): 6502104.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]