51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
機(jī)器學(xué)習(xí)在心血管疾病診斷中的研究進(jìn)展

Review onmachine learning approaches forcardiovascular diseasediagnosis

作者: 趙夢蝶  孫九愛 
單位:上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海 200093) 上海健康醫(yī)學(xué)院(上海 201318)
關(guān)鍵詞: 機(jī)器學(xué)習(xí);  心血管疾病;  醫(yī)學(xué)影像;  多模態(tài)數(shù)據(jù);  輔助診斷 
分類號:R318
出版年·卷·期(頁碼):2020·39·2(208-214)
摘要:

當(dāng)前醫(yī)生對心血管疾病的診斷主要依賴對患者心血管影像的分析,同時,醫(yī)生還需要考慮患者的各項生理健康指標(biāo)、既往病史、生活環(huán)境等信息,該方法存在效率低和成本高等問題。因此,人們試圖利用機(jī)器學(xué)習(xí)方法輔助心血管疾病的診斷。本文首先總結(jié)了機(jī)器學(xué)習(xí)在冠狀動脈計算機(jī)斷層掃描、超聲心動圖、心電圖等多種心血管影像處理中的應(yīng)用;其次,對現(xiàn)有的機(jī)器學(xué)習(xí)模型進(jìn)行了評估和分析;最后,本文認(rèn)為雖然現(xiàn)有的基于機(jī)器學(xué)習(xí)的心血管疾病診斷方法已經(jīng)可以媲美專業(yè)醫(yī)生的水平,但是,該方法仍面臨醫(yī)學(xué)數(shù)據(jù)難以大量采集、醫(yī)學(xué)成像信噪比低等困難。未來的研究方向應(yīng)在小樣本診斷模型的性能、多模態(tài)醫(yī)學(xué)數(shù)據(jù)的融合、醫(yī)學(xué)數(shù)據(jù)的共享等方面繼續(xù)改進(jìn)。

At present, the diagnosis of cardiovascular diseases mainly depends on the analysis of cardiovascular images. Meanwhile, doctors also need to take into account the health indicators, medical history, living environment and other information of patients. This method has the disadvantages of low efficiency and high cost, and therefore, machine learning method has been adapted to solve these problems. This paper, summarizes the applications of machine learning in coronary computed tomography, echocardiography, electrocardiogram and so on. By evaluating and analyzing the existing models, the existing machine learning based methods may achieve similar level as clinical doctors. However the machine learning approaches need to solve the problems such as less training data and low signal-to-noise ratio of medical imaging data. The future research direction should continue to improve the performance of small sample diagnostic model, the fusion of multimodal medical data, the sharing of medical diagnostic data and so on.

參考文獻(xiàn):

[1] 胡盛壽,高潤霖,劉力生,等. 《中國心血管病報告2018》概要[J]. 中國循環(huán)雜志, 2019, 34(3): 209-220.

Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 Report on Cardiovascular Diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220.

[2] 中國醫(yī)學(xué)影像AI產(chǎn)學(xué)研用創(chuàng)新聯(lián)盟. 人工醫(yī)學(xué)影像AI白皮書[EB/OL]. 2019, https://vcbeat.top.

China medical imaging AI industry-university-research innovation alliance. White paper medical imaging AI in China[EB/OL]. 2019, https://vcbeat.top.

[3] Wang G, Li W, Zuluaga MA, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1562-1573.

[4] Balakrishnan G, Zhao A, Sabuncu MR, et al. An unsupervised learning model for deformable medical image registration[C]// In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, Washington, USA: IEEE Press, 2018: 9252-9260.

[5] Hu L, Cui J. Digital image recognition based on fractional-order-PCA-SVM coupling algorithm[J]. Measurement, 2019, 145: 150-159.

[6] Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331.

[7] Takx RAP, de Jong PA, Leiner T, et al. Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability[J]. PLoS One, 2014, 9(3): e91239.

[8] I?gum I, de Vos B, Wolterink J, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT[J]. Journal of Nuclear Cardiology, 2018, 25(6): 2133-2142.

[9] Motwani M, Dey D, Berman D, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J]. European Heart Journal, 2016, 38(7): 500-507.

[10] Liu Y, Dai X, Wolf H, et al. A machine-learning model in predicting hemodynamically significant coronary artery disease: a prospective cohort study[J]. Circulation, 2018, 138(Suppl_1): A10602.

[11] Nakanishi R, Dey D, Commandeur F, et al. Machine learning in predicting coronary heart disease and cardiovascular disease events: results from the multi-ethnic study of atherosclerosis (mesa)[J]. Journal of the American College of Cardiology, 2018, 71(11 Supplement): A1483.

[12] Commandeur F, Goeller M, Betancur J, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(8):1835-1846.

[13] Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis[J]. Medical image analysis, 2018, 44: 72-85.

[14] Khamis H, Zurakhov G, Azar V, et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary[J]. Medical Image Analysis, 2017, 36: 15–21.

[15] Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-Efs Multicenter Study[J]. Journal of the American College of Cardiology , 2015, 66(13): 1456-1466.

[16] Dong S, Luo G, Sun G, et al. A left ventricular segmentation method on 3D echocardiography using deep learning and snake[C]// 2016 Computing in Cardiology Conference. Vancouver, BC, Canada: IEEE Press, 2016, 43: 473–476.

[17] Zhao Q, Zhang L. ECG feature extraction and classification using wavelet transform and support vector machines[C]// 2005 International Conference on Neural Networks and Brain. Beijing, China: IEEE Press, 2005, 2:1089–1092.

[18] Scirè A, Chatzigiannakis I, Anagnostopoulos A. Heartbeat detection and arrhythmia classification from the ECG signal using machine learning tech-niques[D]. Rome: University of Rome, 2018.

[19] Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69.

[20] Betancur J, Rubeaux M, Fuchs T, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation[J]. Journal of Nuclear Medicine, 2017, 58(6): 961–967.

[21] Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC: Cardiovascular Imaging, 2018, 11(11): 1654-1663.

[22] Dey D, Diaz Zamudio M, Schuhbaeck A, et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: a pilot study[J]. Circulation: Cardiovascular Imaging, 2015, 8(10): e003255.

[23] Dawes T, de Marvao A, Shi W, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study[J]. Radiology, 2017, 283(2): 381–390.

[24] Zhang L, Wahle A, Chen Z, et al. Predicting locations of high-risk plaques in coronary arteries in patients receiving statin therapy[J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 151–161.

[25] Abdolmanafi A, Duong L, Dahdah N, et al. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(2): 1203–1220.

[26] Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J].Annual Review of Biomedical Engineering, 2017, 19: 221-248.

[27] 孫凱. 隨機(jī)森林在醫(yī)學(xué)影像分析中的應(yīng)用研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(4): 413-418.

Sun K. Research progress on application of random forest in medical image analysis[J]. Beijing Biomedical Engineering, 2018, 37(4): 413-418.

[28] 袁麗, 吳水才, 袁延超. 一種改進(jìn)的FastICA算法在胎兒心電提取中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(5): 488-493.

Yuan L, Wu SC, Yuan YC. Application of an improved FastICA algorithm in fetal electrocardiogram extraction[J]. Beijing Biomedical Engineering, 2018, 37(5): 488-493.

[29] 翟柏松, 趙向蕊, 陳向前, 等. 術(shù)中透視圖像質(zhì)量對雙平面定位算法精度的影響[J]. 北京生物醫(yī)學(xué)工程, 2017, 36(4): 372-377.

Zhai BS, Zhao XR, Chen XQ, et al. Influence of intraoperative fluoroscopy images’ quality on the accuracy of bi-planar positioning method[J]. Beijing Biomedical Engineering, 2017, 36(4): 372-377.

[30] 伍建林, 鄂亞軍, 張清, 等. 嗅覺腦功能磁共振成像中提高磁敏感性腦區(qū)信噪比的參數(shù)優(yōu)化研究[J]. 中國醫(yī)學(xué)影像技術(shù), 2007, 23(12): 1764-1768.

Wu JL, E YJ, Zhang Q, et al. Study of parameter optimum on the olfaction fMRI for increasing SNR of the susceptibility regions of human brain[J]. Chinese Journal of Medical Imaging Technology, 2007, 23(12): 1764-1768.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]