51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于靜息態(tài)功能性磁共振成像的個(gè)體認(rèn)知多標(biāo)簽分類

Multi-label classification of individual cognition based on resting state functional magnetic resonance imaging

作者: 吳怊慧 
單位:北京交通大學(xué)計(jì)算機(jī)與信息技術(shù)學(xué)院(北京 100044)
關(guān)鍵詞: 靜息態(tài)功能性磁共振成像;  個(gè)體認(rèn)知;  機(jī)器學(xué)習(xí);  多標(biāo)簽分類;  算法對(duì)比 
分類號(hào):R318.04
出版年·卷·期(頁碼):2020·39·2(138-144)
摘要:

目的 與單標(biāo)簽分類相比,多標(biāo)簽分類在現(xiàn)實(shí)世界中更為常見。在神經(jīng)影像學(xué)領(lǐng)域,對(duì)個(gè)體認(rèn)知單標(biāo)簽分類的研究有很多,但是卻沒有關(guān)于個(gè)體認(rèn)知多標(biāo)簽分類的研究。本研究嘗試運(yùn)用機(jī)器學(xué)習(xí)多標(biāo)簽分類算法,利用靜息態(tài)fMRI數(shù)據(jù),對(duì)個(gè)體認(rèn)知進(jìn)行多標(biāo)簽分類研究。 方法 基于390 名(≥18 歲)成年人的靜息態(tài)fMRI數(shù)據(jù),通過5種具有代表性的機(jī)器學(xué)習(xí)多標(biāo)簽分類算法: ML-kNN、hMuLab、LIFT、ML-LOC 和 GLOCAL 對(duì)個(gè)人認(rèn)知進(jìn)行多標(biāo)簽分類,采用十折交叉驗(yàn)證進(jìn)行訓(xùn)練和測試,并用多標(biāo)簽分類常用的評(píng)價(jià)指標(biāo)進(jìn)行結(jié)果的檢驗(yàn)。 結(jié)果 這5種算法都能用于靜息態(tài)fMRI的多標(biāo)簽分類研究,且經(jīng)過算法對(duì)比發(fā)現(xiàn)hMuLab算法的分類效果最好。 結(jié)論 本研究成功地將多標(biāo)簽分類算法應(yīng)用于神經(jīng)影像學(xué)領(lǐng)域并對(duì)個(gè)體認(rèn)知進(jìn)行多標(biāo)簽分類,且通過算法對(duì)比發(fā)現(xiàn)樣本的鄰域信息對(duì)分類結(jié)果很重要。

Objective Compared with single label classification, multi-label classification is more common in the real world.In the field of neuroimaging,there are many studies on single label classification of individual cognition,and no research on multi-label classification of individual cognition.We try to use machine learning multi-label classification algorithm and resting state fMRI data to study the multi-label classification of individual cognition.Methods Based on the resting state fMRI data of 390 adults ( ≥18 years old), five representative algorithms of machine learning multi-label classification: ML-kNN,hMuLab,LIFT,ML-LOC and GLOCAL were used to classify individual cognition,ten fold cross validation was used for training and testing, and commonly used evaluation criteria for multi-label classification were used to test the results.Results The results of each evaluation criterion showed that these five algorithms could be used in the multi-label classification of resting state fMRI, and the hMuLab algorithm had the best classification effect compared with other algorithms.Conclusions We successfully applied the multi-label classification algorithm to multi-label classification of individual cognition in the field of neuroimaging, and found that the sample neighborhood information was important by comparing the five algorithms.

參考文獻(xiàn):

[ 1 ] Zhang ML,Zhou ZH.A review on multi-label learning algorithms [ J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26(8):1819-1837.

[ 2 ] Gibaja E,Ventura S.Multi-label learning: a review of the state of the art and ongoing research[J].Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2014,4(6): 411-444.

[ 3 ] McCallum AK.Multi-Label Text Classification with a Mixture Model Trained by EM [EB/ OL].[1999-12-10]http: / / www.kyriakides. net/ CBCL/ references/ Papers/ mccallum99 multilabel.pdf.

[ 4 ] Ueda N,Saito K.Parametric mixture models for multi-labeled text [C] / / Advances in Neural Information Processing Systems 15. Vancouver, British Columbia, Canada: NIPS 2002, 2002, 15: 737-744.

[ 5 ] Boutell MR,Luo J, Shen X, et al. Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.

[ 6 ] Yu R,Zhang H,An L,et al.Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification [ J ]. Human Brain Mapping, 2017, 38 ( 5 ): 2370-2383.

[ 7 ] Li Y,Liu J,Luo M, et al. Structural connectivity guided sparse effective connectivity for MCI identification [ M ] / / Machine Learning in Medical Imaging.Switzerland: Springer,Cham,2017, 10541: 299-306.

[ 8 ] Wee CY,Yap PT,Li W,et al.Enriched white matter connectivity networks for accurate identification of MCI patients [ J ]. NeuroImage,2011,54(3):1812-1822.

[ 9 ] Zhang ML,Zhou ZH. A k-nearest neighbor based algorithm for multi-label classification [ C ] / / 2005 IEEE International Conference on Granular Computing. Beijing: IEEE, 2005, 2: 718-721.

[10] Zhang ML,Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning [ J ]. Pattern Recognition, 2007, 40 ( 7 ): 2038-2048.

[11] Wang P,Ge R, Xiao X, et al. hMuLab: a biomedical hybrid MUlti-LABel classifier based on multiple linear regression [ J]. IEEE/ ACM Transactions on Computational Biology and Bioinformatics,2017,14(5):1173-1180.

[12] Zhang ML.LIFT: multi-label learning with label-specific features [C] / / International Joint Conference on Artificial Intelligence. Barcelona,Catalonia,Spain: AAAI Press,2011:1609-1614.

[13] Huang SJ,Zhou ZH. Multi?label learning by exploiting label correlations locally [ C ] / / Proceedings of the 26th AAAI Conference on Artificial Intelligence. Toronto, Ontario, Canada: AAAI.12,2012: 949-955.

[14] Zhu Y,Kwok JT,Zhou ZH. Multi-label learning with global and local label correlation[ J].IEEE Transactions on Knowledge and Data Engineering,2018,34: 1081-1094.

[15] Smith SM,Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL[J].NeuroImage,2004,23(Suppl 1): S208-S219.

[16] Jenkinson M,Beckmann CF, Behrens TE, et al. FSL [ J ]. NeuroImage,2012,62(2): 782-790.

[17] Power JD,Mitra A, Laumann TO, et al. Methods to detect, characterize,and remove motion artifact in resting state fMRI[ J]. NeuroImage,2014,84(1):320-341.

[18] Shine JM,Koyejo O, Poldrack RA. Temporal metastates are associated with differential patterns of time-resolved connectivity, network topology, and attention [ J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113 (35): 9888-9891.

[19] Dosenbach NU,Nardos B,Cohen AL,et al.Prediction of individual brain maturity using fMRI [ J ]. Science, 2010, 329 ( 5997 ): 1358-1361.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]