51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于高溫擠出打印的PLGA/β-TCP人工骨支架制備及其性能研究

Preparation and properties of PLGA/β-TCP artificial bone scaffold based on high temperature extrusion printing

作者: 史耕田  馬志勇  錢正  徐文寬  王啟帆 
單位:寧波大學(xué)機械工程與力學(xué)學(xué)院(浙江寧波 3152110; 湖州師范學(xué)院工學(xué)院(浙江湖州 313000) 湖州艾先特電子科技有限公司(浙江湖州 313000)
關(guān)鍵詞: 人工骨支架;PLGA/β-TCP;高溫擠出打印;力學(xué)性能;細胞增殖性能 
分類號:R318.08;R318.01
出版年·卷·期(頁碼):2020·39·3(264-270)
摘要:

目的 制備具有較優(yōu)力學(xué)性能和細胞增殖特性的聚乳酸-羥基乙酸共聚物/β-磷酸三鈣[poly(lactic-co-glycolic acid) / β-tricalcium phosphate,PLGA/β-TCP]人工骨支架,為骨組織工程支架材料和結(jié)構(gòu)的選擇提供實驗依據(jù)。方法 以PLGA和納米β-TCP為原材料,先將PLGA在加熱筒中高溫熔融,再將β-TCP混合攪拌均勻進行打印,采用高溫擠出打印方法制備人工骨支架,研究不同材料配比(PLGA與β-TCP配比為4:1、3:1、2:1)、不同孔徑(200 μm、300 μm和400 μm)、不同層高(4.2mm、5.4mm和6.6mm)以及不同孔形(方形、45°傾斜和60°傾斜)對支架力學(xué)性能和細胞增殖性能的影響。打印了9組支架,利用掃描電鏡分析了支架的形貌特征,用萬能材料試驗機測試了支架的抗壓強度、彈性模量,用CCK-8試劑盒進行了細胞增殖性能測試。最后對實驗數(shù)據(jù)進行極差分析,得出最優(yōu)組合,并制作相應(yīng)的支架,進行力學(xué)性能和生物性能的測試。結(jié)果 在力學(xué)性能實驗中,S5組支架顯示出最好的抗壓強度(7.23 MPa),S9組支架顯示出最好的楊氏模量(356.1 MPa),與骨小梁相當;在細胞增殖實驗中,S1組支架顯示出最好的增殖特性。通過正交實驗法,分析并實驗驗證,得出綜合性能最優(yōu)的支架參數(shù)為材料配比為4:1、層高為6.6 mm、孔型為45°傾斜以及孔徑為200μm。結(jié)論 材料配比為4:1、層高為6.6 mm、孔型為45°傾斜以及孔徑為200μm的支架基本能夠滿足某些松質(zhì)骨(如骨小梁)的力學(xué)性能和細胞增殖性能,并可為后續(xù)相關(guān)研究提供實驗和理論基礎(chǔ)。

Objective To obtain poly(lactic-co-glycolic acid) / β-tricalcium phosphate (PLGA/β-TCP )artificial bone scaffolds with superior mechanical and cell proliferation characteristics under different structures and materials ratios through orthogonal experiment. The high temperature extrusion printing method is used to provide an experimental basis for the preparation of selection of bone tissue engineering scaffold materials and structures with sufficient mechanical properties and good biological properties. Methods  Poly(lactic-co-glycolic acid) (PLGA) and nano-β-tricalcium phosphate (β-TCP) were used as the source materials. The PLGA was first melted in a heating cylinder at a high temperature, and the β-TCP was uniformly mixed and  printed.  Artificial bone scaffolds were preparated by high-temperature extrusion printing method, and we studied  the impact of ratio of different materials (PLGA and β-TCP ratio is 4:1, 3:1, 2:1), different pore sizes (200μm, 300μm and 400μm), different layer height effects of (4.2 mm, 5.4 mm, and 6.6 mm) and different hole shapes (square 45°, and 60° tilt) on  mechanics and cell proliferation performance. Nine groups of scaffold were printed. The morphology of the scaffolds was analyzed by scanning electron microscopy. The compressive strength, elastic modulus of the scaffolds were tested by universal materials testing machine,and cell proliferation comprehensive performance was tested by CCK-8. Finally, the experimental data were range analyzed. The range analysis gived the optimal combination and scaffolds of the parameters obtained from the data analysis were fabricated ,it was tested for mechanical properties and biological properties. Results  In the mechanical properties experiment, the S5 group showed the best compressive strength (7.23 MPa), and the S9 group showed the best Young's modulus (356.1 MPa), which was comparable to the trabecular bone; In cell proliferation experiments, the S1 group showed the best proliferation characteristics. Through orthogonal experiment, analysis and experimental verification, the optimal scaffold performance parameters were ratio of 4:1 of PLGA and β-TCP , layer height 6.6mm, hole shape 45°tilt and pore size 200μm. Conclusions  The scaffolds with a material ratio of 4:1, a layer height of 6.6 mm, a pore shape of 45° inclination, and a pore diameter of 200 μm have an optimum mechanical and cell proliferation comprehensive performance,which provide a better scaffold that can basically meet certain the mechanical properties and cell proliferation properties of some cancellous bones (eg, trabecular bone), and provide experimental and theoretical basis for subsequent related research.

參考文獻:

[1] Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering[J]. Journal of Functional Biomaterials, 2018, 9(1): 22.

[2] Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34(5): 740-753.

[3] E. Ramirez Cedillo, H. Lara Padilla, L. Zamudio Pe?a, et al. Process chain for the fabrication of a custom 3D barrier for guided bone regeneration[J]. Procedia CIRP, 2017,65:151-156.

[4] Inzana JA, Olvera D,Fuller SM,et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J].Biomaterials, 2014, 35(13):4026-4034.

[5]   Chia HN , Wu BM. Recent advances in 3D printing of biomaterials[J].Journal of Biological Engineering2015,9(1):1-14.

[6]  Park SH, Park DS, Shin JW, et al. Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA[J]. Journal of Materials Science: Materials in Medicine, 2012, 23(11): 2671–2678.

[7] O'Brien FJ. Biomaterials & scaffolds for tissue engineering[J]. Materials Today, 2011, 14(3):88-95.

[8] Sergey V. Dorozhkin. Bioceramics of calcium orthophosphates[J]. Biomaterials, 2010, 31(7):1465-1485.

[9] Gisep A,Curtis R, H?nni M, et al. Augmentation of implant purchase with bone cements: An in vitro study of injectability and dough distribution[J]. Journal of Biomedical Materials Researchs Part B Appled Biomaterials, 2006, 77B(1):114-119.

[10] Yang YF,Zhao YH,Tang GW, et al. In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions[J]. Polymer Degradation and Stability, 2008, 93(10):1838-1845.

[11] Yang F,Cui WJ,Xiong Z, et al. Poly(l,l-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro[J]. Polymer Degradation and Stability, 2006, 91(12):3065-3073.

[12]  CMiddleton J, JTipton A. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000,21(23):2335-2346.

[13]  Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network[J]. Tissue engineering, 2001, 7(1): 23-33.

[14] Murphy WL, Dennis RG, Kileny JL, et al. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds[J]. Tissue Engineering, 2002, 8(1): 43-52.

[15]  Harris LD, Kim BS, Mooney DJ.Open pore biodegradable matrices formed with gas foaming[J]. Polymer Crystallization, 1998, 42(3):396-402.

[16]  Sosnowski S, Wo?niak P, Lewandowska-Szumie M,et al. Polyester scaffolds with bimodal pore size distribution for tissue engineering[J]. Macromolecular Bioscience, 2006, 6(6):425-434.  

[17] Lin LL,  Gao HT. Modification of β-TCP/PLGA scaffold and its effect on bone regeneration in vivo[J]. Journal of Wuhan University of Technology-Mater(Materials Science),2016, 31(2):454–460.

[18] Pang L,Hu YY,Yan YN,et al. Surface modification of PLGA/β-TCP scaffold for bone tissue engineering: Hybridization with collagen and apatite[J]. Surface and Coatings Technology, 2007, 201(24):9549-9557.

[19]   Lee JS, Cha HD, Shim JH, et al. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication‐based scaffold for bone tissue engineering[J]. Journal of Biomedical Materials Researchs Part a, 2012, 100A(7):1846-1853.

[20]  Xu MC.In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies[J].Acta Biomaterialia,2014,10(1): 463-476.

[21]  謝青松,組織工程脊髓支架材料:聚乳酸-羥基乙酸最佳孔徑的篩選[J].中國組織工程研究與臨床康復(fù),2010,14(3):393-396.

    Xie QS. Tissue engineered spinal cord scaffold material Optimal pore size of poly lactic-co-glycolic acid scaffolds[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2010,14(3):393-396.

[22]  Farzadi A ,Solati-Hashjin M,Asadi-Eydivand M,et al.Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering[J].PLos One ,2014,9(9): e108252. 

[23]   Yu D,Li Q,Mu X,et al. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology[J]. International Journal of Oral and Maxillofacial Surgery, 2008, 37(10):929-934.

[24]  Shim JH,Moon TS,Yun MJ,et al. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology[J]. Journal of Materials Science: Materials in Medicine, 2012, 23(12):2993-3002.

[25]  Karageorgiou V.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials, 2005,26(27):5474-5491.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]