[ 1 ] 戴建榮, 胡逸民. 圖像引導(dǎo)放療的實(shí)現(xiàn)方式[J]. 中華放射腫瘤學(xué)雜志, 2006, 15(2):132-135. Dai JR, Hu YM. Image guided radiotherapy implementation[ J]. Chinese Journal of Radiation Oncology, 2006, 15(2):132-135. [ 2 ] Kim J, Fessler JA, Lam KL, et al. A feasibility study of mutual information based setup error estimation for radiotherapy [ J ]. Medical Physics, 2001, 28(12):2507-2517. [ 3 ] Sykes JR, Lindsay R, Iball G, et al. Dosimetry of CBCT: methods, doses and clinical consequences [ J ]. Journal of Physics:Conference Series, 2013, 444:012017. [ 4 ] Altunbas C, Zheng D, Weiss E, et al. SU - FF - T - 490: the effect of daily cone beam CT imaging dose on the secondary cancer risk for patients receiving prostate IMRT treatments[ J]. Medical Physics, 2009, 36(6Part16):2636. [ 5 ] Spezi E, Downes P, Jarvis R, et al. Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy [ J ]. International Journal of Radiation Oncology? Biology? Physics, 2012, 83(1):419-426. [ 6 ] 吳潤(rùn)葉, 高黎, 李明輝, 等. 應(yīng)用非每日錐形束 CT 校位減少擺位誤差對(duì)鼻咽癌調(diào)強(qiáng)放療劑量影響[ J]. 中華放射腫瘤學(xué)雜志, 2011, 20(5):379-383. Wu RY, Gao L, Li MH, et al. Using non-daily cone-beam computed tomography reduce dosimetric effect of set-up errors in intensity-modulated radiotherapy for nasopharyngeal cancer [ J]. Chinese Journal of Radiation Oncology, 2011, 20(5):379-383. [ 7 ] 孔玲玲, 程健, 李寶生, 等. 保留乳房術(shù)后放療錐形束 CT 引導(dǎo)系統(tǒng)擺位誤差預(yù)測(cè)的可行性研究[J]. 中華腫瘤防治雜志,2013, 20(12):949-952. Kong LL, Cheng J, Li BS, et al. Feasibility study of systematic setup error prediction for breast irradiation after breast-conserving therapy based on cone-beam CT setup verification[ J]. Chinese Journal of Cancer Prevention and Treatment, 2013, 20 ( 12): 949-952. [ 8 ] 王瑋, 李建彬, 徐敏, 等. 錐形束 CT 引導(dǎo)全乳調(diào)強(qiáng)放療擺位 誤差自適應(yīng)的預(yù)測(cè)與校正[ J]. 中華腫瘤雜志, 2016, 38 (3):197-201. Wang W, Li JB, Xu M, et al. Cone beam CT-derived adaptive radiotherapy for setup error assessment and correction in whole breast intensity modulated radiotherapy [ J]. Chinese Journal of Oncology, 2016, 38(3):197-201. [ 9 ] 李慶, 尹龍斌, 謝慧輕, 等. 鼻咽癌調(diào)強(qiáng)放療中擺位誤差的變化趨勢(shì):基于千伏級(jí)錐形束 CT 的前瞻性研究[ J]. 放射學(xué)實(shí)踐, 2017, 32(8):870-875. Li Q, Yin LB, Xie HQ, et al. Trends of inter-fractional setup errors in intensity-modulated radiotherapy for nasopharyngeal carcinoma: a prospective study based on kilovoltage cone-beam computed tomography[ J]. Radiologic Practice, 2017, 32( 8): 870-875. [10] 丘敏敏, 鐘嘉健, 歐陽(yáng)斌, 等. 基于 高 斯 混 合 模 型 Varian NovalisTX 直線加速器盆腔腫瘤放療擺位誤差分布預(yù)測(cè)模型的構(gòu)建[ J]. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版), 2019, 40 ( 2):284-290. Qiu MM, Zhong JJ, Ouyang B, et al. Set-up errors distribution prediction model for pelvic tumors radiotherapy of Varian NovalisTX medical linear accelerator based on gaussian mixtures [ J]. Journal of Sun Yat-sen University ( Medical Sciences), 2019, 40(2):284-290. [11] Bengio Y. Learning deep architectures for AI [ J]. Foundations and Trends ? in Machine Learning, 2009, 2(1):1-127. [12] 張方圓, 郁蕓, 趙宇, 等. 人工神經(jīng)網(wǎng)絡(luò)在臨床醫(yī)學(xué)中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2016, 35(4):422-428. Zhang FY, Yu Y, Zhao Y, et al. Application of artificial neural network in clinical medicine [ J ]. Beijing Biomedical Engineering, 2016, 35(4):422-428. [13] Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction[ J]. IEEE / ACM Transactions on Computational Biology & Bioinformatics, 2015, 12(1):103-112. [14] 李偉, 楊金才, 黃牛. 深度學(xué)習(xí)在藥物設(shè)計(jì)與發(fā)現(xiàn)中的應(yīng)用[J]. 藥學(xué)學(xué)報(bào), 2019, 54(5):761-767. Li W, Yang JC, Huang N. Deep learning in drug design and discovery [ J ]. Acta Pharmaceutica Sinica, 2019, 54 ( 5 ):761-767. [15] Ayachi R, Afif M, Said Y, et al. Traffic signs detection for real-world application of an advanced driving assisting system using deep learning [ J]. Neural Processing Letters, 2020, 51 ( 1): 837-851. [16] Sezer OB, Ozbayoglu AM. Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach [ J]. Applied Soft Computing, 2018, 70: 525-538. [17] 鄧金城, 彭應(yīng)林, 劉常春, 等. 深度卷積神經(jīng)網(wǎng)絡(luò)在放射治療計(jì)劃圖像分割中的應(yīng)用[ J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2018,35(6):621-627. Deng JC, Peng YL, Liu CC, et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics, 2018, 35 (6):621-627. [18] 王燃. 基于深度學(xué)習(xí)的胸腹部腫瘤呼吸運(yùn)動(dòng)的實(shí)時(shí)跟蹤方法研究[D]. 深圳:中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院, 2019. Wang R. Deep learning in real-time tracking method for respiratory motion of thoracic and abdominal tumors [ D ]. Shenzhen:Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2019. [19] Dinkla AM, Wolterink JM, Maspero M, et al. MR-only brain radiation therapy:dosimetric evaluation of synthetic CTs generated by a dilated convolutional neural network [ J ]. International Journal of Radiation Oncology*Biology*Physics, 2018, 102 (4):801-812. [20] Ibragimov B, Toesca DAS, Yuan Y, et al. Neural networks for deep radiotherapy dose analysis and prediction of liver SBRT outcomes [ J ]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5):1821-1833. [21] Keras. The Python deep learning library [EB / OL]. (2019-11-6)[2019-11-15] https: / / keras.io / . [22] 覃光華, 丁晶, 陳彬兵. 預(yù)防過(guò)擬合現(xiàn)象的人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練策略及其應(yīng)用[J]. 長(zhǎng)江科學(xué)院院報(bào), 2002, 19(3):59-61. Qin GH, Ding J, Chen BB. Learning strategies of artificial neural networks for preventing over-training and their application [ J]. Journal of Yangtze River Scientific Research Institute, 2002, 19 (3):59-61. [23] Lin S, Pan J, Han L, et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy:report on the 3-year outcome of a prospective series[ J]. International Journal of Radiation Oncology*Biology*Physics, 2009, 75 (4):1071-1078.
|