51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于非結(jié)節(jié)自動分類的二維卷積網(wǎng)絡(luò)在肺結(jié)節(jié)檢測假陽性減少中的應(yīng)用

The two-dimensional convolution network based on non nodule automatic classification for reduction of false positivity in pulmonary nodule detection

作者: 任敬謀  李曉琴 
單位:北京工業(yè)大學(xué)環(huán)境與生命學(xué)部(北京 100124)
關(guān)鍵詞: 醫(yī)學(xué)影像處理;  計算機(jī)斷層掃描;  肺結(jié)節(jié)檢測;  卷積神經(jīng)網(wǎng)絡(luò);  深度學(xué)習(xí) 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·4(389-397)
摘要:

目的 針對計算機(jī)斷層掃描(computed tomography, CT)圖像的肺結(jié)節(jié)自動檢測中靈敏度低及存在大量假陽性的問題,本文提出了一種基于非結(jié)節(jié)自動分類的二維卷積神經(jīng)網(wǎng)絡(luò)( convolutional neural network, CNN),并用于肺結(jié)節(jié)檢測中的假陽性減少。方法 首先對 CT 圖像進(jìn)行預(yù)處理,通過對原始 CT 圖像重采樣和歸一化,解決不同樣本像素間隔不一致及圖像對比度不統(tǒng)一問題;采用結(jié)節(jié)不同空間方向的二維切片信息采集進(jìn)行正樣本擴(kuò)充,負(fù)樣本無監(jiān)督分類方法平衡正負(fù)樣本數(shù)量;分別利用不同類別負(fù)樣本與正樣本訓(xùn)練二維卷積神經(jīng)網(wǎng)絡(luò),獲得多個用于降低假陽性的 2D CNN 肺結(jié)節(jié)檢測模型,對LUNA16 提供的假陽性減少數(shù)據(jù)集進(jìn)行五折交叉驗證,利用官方提供的評估程序?qū)δP瓦M(jìn)行評估。結(jié)果 通過與直接使用單個 2D CNN 進(jìn)行分類的模型比較,對非結(jié)節(jié)分類后訓(xùn)練多個模型的分類結(jié)果較佳,最終競爭性指標(biāo)(competition performance metric,CPM)競爭性得分 0.849? 結(jié)論 基于非結(jié)節(jié)自動分類的 2D CNN 模型可以有效地對假陽性肺結(jié)節(jié)進(jìn)行剔除,相較于其他 2D CNN 具有競爭力,可為肺癌早期篩查提供幫助。

Objective In order to solve the problem of low sensitivity and a large number of false positives in the automatic detection of pulmonary nodules in CT images, this paper proposes a two-dimensional convolutional neural network ( CNN ) based on non-nodule automatic classification and applies it to the reduction of false positives in the detection of pulmonary nodules. Methods Firstly, the CT image was preprocessed by resampling and normalizing the original CT image, to solve the problem of inconsistent pixel spacing and image contrast of different samples. The positive samples were expanded by two-dimensional slice information collection in different spatial directions, and the negative samples were classified unsupervised to balance the positive and negative samples. Two-dimensional convolutional neural networks were trained with different types of negative samples and positive samples to obtain a number of 2D CNN pulmonary nodule detection models for reducing false-positive, by using the false positive reduction data set provided by LUNA16 to conduct 5-fold cross validation, and evaluated the model with the evaluation procedure provided by LUNA16. Results Compared with the model directly using a single 2D CNN for classification, the result of training multiple models after non nodule classification was better, the final CPM ( competition performance metric) competitive score was 0.849. Conclusions The 2D CNN model based on non-nodule automatic classification can effectively reduce the number of false-positive pulmonary nodules, which is competitive with other 2D CNN, and can provide help for early lung cancer screening.

參考文獻(xiàn):

[ 1 ] Fitzmaurice C, Allen C, Barber R M, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015:a systematic analysis for the Global Burden of Disease Study[J]. JAMA Oncology, 2017, 3(4):524-548.

[ 2 ] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[ J]. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424.

[ 3 ] Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe:Estimates for 40 countries and 25 major cancers in 2018 [ J ] . European Journal of Cancer, 2018, 103:356-387.

[ 4 ] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018 [ J ] . CA:A Cancer Journal for Clinicians, 2018, 68(1) :7-30.

[ 5 ] Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma [ J] . Nature, 2008, 455 (7216) :1069-1075.

[ 6 ] Sanders HR, Albitar M. Somatic mutations of signaling genes in non-small-cell lung cancer [ J ] . Cancer Genetics and Cytogenetics, 2010, 203(1) :7-15.

[ 7 ] Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends[J]. Cancer Epidemiology Biomarkers & Prevention, 2010, 19(8):1893-1907.

[ 8 ] Oken MM, Hocking WG, Kvale PA, et al. Screening by chest radiograph and lung cancer mortality the prostate, lung, colorectal, and ovarian ( PLCO) randomized trial [ J] . JAMA- Journal of the American Medical Association, 2011, 306( 17) : 1865-1873.

[ 9 ] National Lung Screening Trial Research Team. The national lung screening trial:overview and study design[ J] . Radiology, 2011, 258(1) :243-253.

[10] Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[ J] . the New England Journal of Medicine, 2011, 365(5) :395-409.

[11] Cao P, Liu X, Yang J, et al. A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules [ J ] . Pattern Recognition, 2017, 64:327-346.

[12] Shen W, Zhou M, Yang F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[ J] . Pattern Recognition, 2017,61:663-673.

[13] Liu X, Hou F, Qin H, et al. Multi-view multi-scale CNNs for lung nodule type classification from CT images [ J ] . Pattern Recognition, 2018, 77:262-275.

[14] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [ J ] . CA:A Cancer Journal for Clinicians, 2020, 70(1) :7-30.

[15] Ye X, Lin X, Dehmeshki J, et al. Shape-based computer-aided detection of lung nodules in thoracic CT images [ J ]. IEEE Transactions on Biomedical Engineering, 2009, 56 ( 7 ): 1810-1820.

[16] Jacobs C, van Rikxoort EM, Twellmann T, et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images[ J]. Medical Image Analysis, 2014, 18( 2): 374-384.

[17] Ali I, Hart GR, Gunabushanam G, et al. Lung nodule detection via deep reinforcement learning [ J ] . Frontiers in Oncology, 2018, 8:108.

[18] Dou Q, Chen H, Yu L, et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection [ J] .IEEE Transactions on Biomedical Engineering, 2017, 64 ( 7) :1558-1567.

[19] Ciompi F, de Hoop B, van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box [ J ] . Medical Image Analysis,2015, 26(1) :195-202.

[20] Setio AAA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images:false positive reduction using multi-view convolutional networks [ J ] . IEEE Transactions on Medical Imaging, 2016, 35(5) :1160-1169.

[21] Armato Ⅲ SG, McLennan G, Bidaut L, et al. The Lung Image Database Consortium ( LIDC ) and Image Database Resource Initiative ( IDRI) :a completed reference database of lung nodules on CT scans[ J] . Medical Physics, 2011, 38(2) :915-931.

[22] Setio AAA, Traverso A, de Bel T, et al. Validation, comparison,and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:The LUNA16 challenge [J]. Medical Image Analysis, 2017, 42:1-13.

[23] Murphy K, van Ginneken B, Schilham A, et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification [ J] . Medical Image Analysis, 2009, 13(5) :757-770.

[24] Setio AAA, Jacobs C, Gelderblom J, et al. Automatic detection of large pulmonary solid nodules in thoracic CT images [ J ] . Medical Physics, 2015, 42(10) :5642-5653.

[25] Ponti MA, Ribeiro LSF, Nazare TS, et al. Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask [ M] / / 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials ( SIBGRAPI - T ) .Niterói, Brazil:IEEE Press, 2017:17-41.

[26] 呂曉琪, 吳涼, 谷宇, 等. 基于三維卷積神經(jīng)網(wǎng)絡(luò)的低劑量CT肺結(jié)節(jié)檢測[J]. 光學(xué)精密工程, 2018, 26(5):1211-1218.

Lyu XQ, Wu L, GU Y, et al. Detection of low dose CT pulmonary nodules based on 3D convolution neural network[ J] . Optics and Precision Engineering, 2018, 26(5) :1211-1218.

[27] 金奇樑.基于 CT 圖像的肺結(jié)節(jié)自動識別系統(tǒng)研究[ D] .杭州:浙江大學(xué), 2016:40-50.

Jin QL. Research on pulmonary nodules detection system based on CT images[ D] . Hangzhou:Zhejiang University, 2016:40-50.

[28] Dandil E, ?akirogˇ lu M, Ek?i Z, et al. Artificial neural network-based classification system for lung nodules on computed tomography scans [ C ] / / International Conference of Soft Computing and Pattern Recognition ( SoCPaR) . Tunis, Tunisia:IEEE Press, 2014:382-386.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]