51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于抗混疊小波變換的胎兒心電信號(hào)分離方法

Fetal ECG separation method based on anti-aliasing wavelet transform

作者: 王旭  蔡宗平  林生佐 
單位:廣東環(huán)境保護(hù)工程職業(yè)學(xué)院 (廣東佛山 528216) 通信作者:王旭 E-mail:954582137@ qq. com
關(guān)鍵詞: 抗混疊;  小波變換;  胎兒心電信號(hào);  母體心電信號(hào);  心電峰值 
分類號(hào):R318;TP301. 6
出版年·卷·期(頁(yè)碼):2020·39·4(398-405)
摘要:

目的 胎兒心電圖能夠較好地反映胎兒在子宮內(nèi)的發(fā)育狀況,但是由于采集的胎兒心電信號(hào)中混有噪聲干擾,給醫(yī)學(xué)診斷帶來(lái)極大干擾。抗混疊小波變換算法能夠從混有噪聲干擾的源信號(hào)中提取胎兒心電信號(hào),且當(dāng)胎兒心電信號(hào)與母體心電信號(hào)混疊時(shí),該方法仍能夠提取胎兒心電信號(hào)。基于此,本文提出一種基于抗混疊小波變換的胎兒心電信號(hào)分離方法。方法 首先對(duì)原始心電信號(hào)進(jìn)行濾波預(yù)處理,再利用小波變換分離母體心電信號(hào)和胎兒心電信號(hào),最后根據(jù)抗混疊分離算法獲取混合心電信號(hào)中的胎兒心電信號(hào),得到滿周期的胎兒心電信號(hào)。結(jié)果 該方法能夠較好地獲取胎兒心電波形,胎兒心電波形識(shí)別準(zhǔn)確率可達(dá) 100%,在信噪比較低的情況下,識(shí)別準(zhǔn)確率仍可達(dá)到 77. 78%。應(yīng)用此算法在國(guó)外 MIT-BIT 心電信號(hào)數(shù)據(jù)和國(guó)內(nèi)醫(yī)院臨床心電信號(hào)數(shù)據(jù)中進(jìn)行實(shí)驗(yàn)仿真,并與先前學(xué)者的胎兒心電信號(hào)提取方法進(jìn)行對(duì)比。結(jié)論 此方法具有較高的識(shí)別準(zhǔn)確率以及在臨床應(yīng)用中的可靠性和可行性。

Objective Fetal electrocardiogram can reflect the development of fetus in the womb better, but the interference of noise in the collected fetal ECG signals brings great interference to the medical diagnosis. The anti-aliasing wavelet transform algorithm can extract the fetal ECG signals from the source signals with noise interference,and when the fetal ECG signals are aligned with the maternal ECG signals,the method can still extract the fetal ECG signals. And on account of which,this paper proposes a method of fetal ECG separation based on anti-aliasing wavelet transform. Methods First,the ECG signals are processed by noise filtering. Then,we use wavelet transform to separate maternal ECG and fetal ECG. Finally,the fetal ECG signals in the mixed ECG are obtained by using the anti-aliasing separation algorithm. Results This method can obtain the ECG waveform better,and the accuracy of fetal ECG signal recognition can be 100%. In the case of low signal-to-noise ratio,the accuracy of fetal ECG signal recognition is still 77. 78%. The algorithm is simulated in foreign MIT-BIT ECG database and clinical ECG data in domestic hospitals and is compared with the previous methods of fetal ECG extraction. Conclusions The high recognition accuracy of this method,as well as its reliability and feasibility in clinical application is proved.

參考文獻(xiàn):

[ 1 ] Dessì A,Pani D,Raffo L. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings [J]. Physiological Measurement,2014,35 (8):1621.

[ 2 ] John RG,Ramachandran KI,Nair RH,et al. Portable fental ECG extractor from abdECG [ J ]. International Conference on Communication and Signal Processing,2016:845-848.

[ 3 ] Singh R,Singh A,Kaur J. Adaptive filter design for extraction of fetus ECG signal [M]. Springer India:Proceedings of the Second International Conference on Computer and Communication Technologies,2015:109-117.

[ 4 ] Turnip M,Saragih RIE,Dharma A,et al.Extraction of ECG signal with adaptive filter for hearth abnormalities detection[J]. Journal of Physics:Conference Series,2018,1007:012019.

[ 5 ] Lin CS, Hasting E. Blind source separation of heart and lung sounds based on nonnegative matrix factorization [ C ] / / International Symposium on Intelligent Signal Processing and Communications Systems. Naha-shi, Japan: IEEE Press, 2013: 731-736.

[ 6 ] Li R,Chen BF. FECG extraction algorithm based on BSS using temporal structure and DWT [ J ]. Applied Mechanics and Materials,2014,571-572:209-212.

[ 7 ] Sait NA,Thangarajan M,Snehalatha U. Neural network based on Verilog HDL for fetal ECG extraction [ J]. International Journal of Biomedical Research,2016,7(10):698-701.

[ 8 ] 袁延超,吳水才,袁麗,等. 基于 BP 神經(jīng)網(wǎng)絡(luò)的胎兒心電提取算法研究[J]. 生物醫(yī)學(xué)工程與臨床,2018,22(3):237-243.

Yuan YC, Wu SC, Yuan L, et al. Research of fetal electrocardiogram extraction algorithm based on BP neural network [ J ]. Biomedical Engineering and Clinical Medicine,2018,22(3):237-243.

[ 9 ] Fu Y, Xiang S, Chen T, et al. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine [ C ] / /Applied Optics and Photonics China. Beijing,China:International Society for Optics and Photonics,2015:96720O.

[10] Sarmiento LO,Gonzalez A,Roig JM. Synthetic database for testing algorithms of fetal ECG extraction from abdominal ECG [ C] / /XVII Symposium of Image, Signal Processing, and Artificial Vision. Antioquia,Colombia:IEEE Press,2012:56-61.

[11] 華晶. 可穿戴式系統(tǒng)心電信號(hào)壓縮感知與心律失常分類研究[D]. 南昌:南昌大學(xué),2017:24-35.

[12] 刁晨. 心電信號(hào)質(zhì)量評(píng)估與心率變異性分析方法研究[ D].蘭州:蘭州理工大學(xué),2016:23-26.

[13] 曹細(xì)武,鄧親愷. 心電圖各波的頻率分析[ J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志,2001,18(1):46-48.

[14] Sameni R,Clifford GD. A review of fetal ECG signal processing issues and promising directions [ J ]. The Open Pacing,Electrophysiology & Therapy Journal,2010,3:4-20.

[15] Castillo E,Morales DP,Botella G,et al. Efficient wavelet-based ECG processing for single-lead FHR extraction [ J ]. Digital Signal Processing,2013,23 (6):1897-1909.

[16] Donoho DL,Johnstone IM. Adapting to unknown smoothness via wavelet shrink-age [ J ]. Journal of the American Statistical Association,1995,90(432):1200-1224.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]