51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
PCL / ZrO2 骨組織工程支架 3D 打印制備方法及其性能研究

Preparation and properties of PCL / ZrO2 bone tissue engineering scaffold based on 3D printing

作者: 王啟帆  馬志勇  鐘林娜  謝雯佳  錢正  史耕田 
單位: 寧波大學(xué)機(jī)械工程與力學(xué)學(xué)院(浙江寧波 315211) 湖州師范學(xué)院工學(xué)院(浙江湖州 313000) 湖州艾先特電子科技有限公司(浙江湖州 313000) 四川大學(xué)華西口腔醫(yī)院修復(fù)科(成都 610000) 通信作者:馬志勇? E-mail:02641@ zjhu.edu.cn
關(guān)鍵詞: 3D  打印;  骨組織工程支架;  聚己內(nèi)酯;  氧化鋯;  生物相容性 
分類號(hào):R318
出版年·卷·期(頁碼):2020·39·4(418-424)
摘要:

目的 為制備出滿足骨缺損修復(fù)需要的具有一定力學(xué)強(qiáng)度和生物活性的骨組織工程支架,本文選取聚己內(nèi)酯(polycaprolactone, PCL)和納米氧化鋯( ZrO2 ) 粉末制備出三維多孔復(fù)合材料支架。方法 采用高溫熔融擠出 3D 打印方式制備 PCL / ZrO2 復(fù)合材料支架,為獲取支架的幾何形態(tài)?力學(xué)性能和生物學(xué)性能,利用掃描電子顯微鏡( scanning electron microscope, SEM) 和萬能試驗(yàn)機(jī)( material testsystem,MTS)分別分析了支架的形貌和壓縮性能,并通過體外細(xì)胞培養(yǎng)的方式測(cè)試復(fù)合材料支架的生物相容性。結(jié)果 制備完成的復(fù)合材料支架具有良好的三維孔隙結(jié)構(gòu),孔徑≥ 400 μm,孔隙率≥ 40 %? 對(duì)比純 PCL 支架,PCL / ZrO2 復(fù)合材料支架的力學(xué)性能顯著提高,楊氏模量提高 0倍左右,抗壓強(qiáng)度提高0倍左右。在體外實(shí)驗(yàn)中,細(xì)胞培養(yǎng) 7 d 后 PCL / ZrO2 復(fù)合材料支架上的細(xì)胞增殖對(duì)比純 PCL 支架有顯著提高。 結(jié)論 基于該結(jié)果,本文制備出的 PCL / ZrO2 生物活性骨組織支架在骨組織工程方面有一定的應(yīng)用前景。

【Abstract】 Objective In order to prepare bone tissue engineering scaffolds with certain mechanical strength and biological activity to meet the needs of bone defect repair, three-dimensional porous composite scaffolds were prepared by using polycaprolactone (PCL)and nano-zirconia ( ZrO2 ) powder. Methods The PCL /ZrO2 composite material support was prepared by high temperature melt extrusion 3D printing. The geometry, mechanical properties and biological properties of the scaffolds were obtained. The morphology and compression properties of the scaffolds were analyzed by scanning electron microscope (SEM) and material test system (MTS). The biocompatibility of the composite scaffold was tested by in vitro cell culture. Results The prepared composite scaffold had a good 3D pore structure, a pore diameter of ≥ 400 μm, and a porosity of ≥ 40%. Compared with the pure PCL stent, the mechanical properties of the PCL / ZrO2 composite stent were significantly improved, the Young’s modulus was increased by about 0.4 times, and the compressive strength was increased by about 0.5 times. In vitro, cell proliferation on the PCL /ZrO2 composite scaffold was significantly improved after 7 days of cell culture compared to the pure PCL scaffold. Conclusions Based on the results, the PCL / ZrO2 bioactive bone tissue scaffold prepared in this paper has certain application prospects in bone tissue engineering.

參考文獻(xiàn):

[ 1 ] Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016, 83:363-382.

[ 2 ] Ji K, Wang Y, Wei Q, et al. Application of 3D printing technology in bone tissue engineering [ J ]. Bio-Design and Manufacturing, 2018, 1:203-210.

[ 3 ] Garrett B. 3D printing: new economic paradigms and strategic shifts[J]. Global Policy, 2014, 5(1):70-75.

[ 4 ] 張家彬, 馬志勇, 陳宏慶, 等. 45S5 生物活性骨組織支架 3D打印制備及性能研究[ J]. 北京生物醫(yī)學(xué)工程, 2018, 37(6):597-602, 610.

Zhang JB, Ma ZY, Chen HQ, et al. Fabrication and performance of 45S5 bioactive scaffold based on 3D printing [ J]. Beijing Biomedical Engineering, 2018, 37(6):597-602, 610.

[ 5 ] Ma H, Feng C, Chang J, et al. 3D - printed bioceramic scaffolds:from bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2018, 79:37-59.

[ 6 ] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing [ J]. Materials Today, 2013, 16 (12):496-504.

[ 7 ] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO 2 nanotube diameter directs cell fate[J]. Nano Letters, 2007, 7(6):1686-1691.

[ 8 ] Navarro M, Aparicio C, Charles-Harris M, et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties[M] / / Ordered Polymeric Nanostructures at Surfaces. Berlin:Springer-Verlag Berlin Heidelberg, 2006, 200: 209-231.

[ 9 ] Bártolo P, Bidanda B. Bio-materials and prototyping applications in medicine[M]. Berlin:Springer Nature Switzerland AG, 2008. 

[10] Qu X, Xia P, He J, et al. Microscale electrohydrodynamic printing of biomimetic PCL / nHA composite scaffolds for bone tissue engineering[J]. Materials Letters, 2016, 185:554-557.

[11] Huang B, Caetano G, Vyas C, et al. Polymer-ceramic composite scaffolds:the effect of hydroxyapatite and β-tri-calcium phosphate [J]. Materials(Basel), 2018, 11(1):129.

[12] Yeo MG, Kim GH. Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL / β-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration [ J ]. Chemistry of Materials, 2012, 24 ( 5 ): 903-913.

[13] Jeon H, Lee M, Yun S, et al. Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration [ J ]. Chemical Engineering Journal, 2019, 360:519-530.

[14] Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, et al. Development of 3D PCL microsphere / TiO2 nanotube composite scaffolds for bone tissue engineering[ J]. Materials Science and Engineering C, 2017, 70:586-598.

[15] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[ J]. Biomaterials, 2003, 24 (13):2161-2175.

[16] Li HC, Wang DG, Chen CZ. Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite [J]. Ceramics International, 2015, 41(8):10160-10169.

[17] Ramaswamy Y, Wu C, van Hummel A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic[J]. Biomaterials, 2008, 29(33):4392-4402.

[18] Catauro M, Raucci M, Ausanio G, et al. Sol-gel processing of drug delivery zirconia / polycaprolactone hybrid materials [ J ]. Journal of Materials Science: Materials in Medicine, 2008, 19 (2):531-540.

[19] Catauro M, Bollino F, Papale F, et al. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL / ZrO2 hybrid materials synthesized by sol-gel route:in vitro evaluation[ J]. Materials Science and Engineering C, 2014, 45:395-401.

[20] G?tz HE, Müller M, Emmel A, et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants [ J]. Biomaterials, 2004, 25(18):4057-4064.

[21] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[ J ]. Journal of Biochemistry, 1997, 121 ( 2 ): 317-324.

[22] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.

[23] Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study [ J]. Acta Biomaterialia, 2008, 4 (6):1904-1915.

[24] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2001, 21(24):2529-2543.

[25] Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites[ J]. Acta Materialia, 2013, 61(14):5198-5215.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]