51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
編織支架彎曲變形時(shí)扁平現(xiàn)象的數(shù)值模擬研究

Numerical simulation of flattening phenomenon in braided stent during bending deformation

作者: 付文宇  李立新  喬愛科 
單位:北京聯(lián)合大學(xué)機(jī)器人學(xué)院(北京 100027) 北京工業(yè)大學(xué)環(huán)境與生命學(xué)部(北京100124)
關(guān)鍵詞: 編織支架;有限元分析;扁平現(xiàn)象;數(shù)值模擬;參數(shù)分析 
分類號(hào):R318.01
出版年·卷·期(頁碼):2020·39·5(455-461)
摘要:

目的 編織支架通常用于介入治療腦動(dòng)脈瘤或動(dòng)脈狹窄。在彎曲變形時(shí),編織支架有可能出現(xiàn)截面扁平現(xiàn)象。而在彎曲變形過程中保持其截面形狀不變,是編織支架實(shí)現(xiàn)介入治療療效的必要條件。因此,有必要對(duì)編織支架編織角、金屬絲根數(shù)、軸向長(zhǎng)度及名義直徑和扁平現(xiàn)象的關(guān)系進(jìn)行定量研究。方法 首先使用參數(shù)化造型方法構(gòu)造具有不同的編織角度、金屬絲根數(shù)、軸向長(zhǎng)度和名義直徑的19個(gè)編織支架模型;然后對(duì)這些模型在純彎曲過程中的扁平現(xiàn)象用Abaqus / Explicit進(jìn)行計(jì)算分析;最后與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,驗(yàn)證有限元分析結(jié)果。結(jié)果 力學(xué)計(jì)算表明編織角大于50?時(shí)扁平率小于0.0022;隨著彎曲角度的增大,扁平率也增大;編織角為60?或70?時(shí),編織支架軸向長(zhǎng)度對(duì)扁平率基本沒有影響;編織角為50?時(shí),支架軸向長(zhǎng)度增加,扁平率逐漸減小。編織角為30?,名義直徑從2 mm增加到5 mm,扁平率在0.26~0.46之間變化。編織角30?,軸向長(zhǎng)度35mm,支架金屬絲根數(shù)從12增加到48,扁平率從接近為0迅速增加到0.607。結(jié)論  編織支架彎曲變形時(shí)扁平現(xiàn)象的數(shù)值模擬結(jié)果可以為臨床應(yīng)用中編織支架的結(jié)構(gòu)設(shè)計(jì)提供理論指導(dǎo)。

Objective Braided stent is usually used for interventional treatment of cerebral aneurysm or arterial stenosis. During the bending deformation, flattening phenomenon may occur. To achieve the therapeutic effect of the braided stent, a necessary condition is that its cross-sectional shape keeps unchanged during the bending deformation. Therefore, the quantitative effects of the braiding angle, the number of wires, axial length and nominal diameter on the flattening phenomenon of the cross section during bending deformation are studied. Methods Firstly, nineteen models of braided stent were constructed, which have different braiding angles, axial lengths,nominal diameter and the number of wires. Then the evaluation of flattening phenomenon was conducted using Abaqus / Explicit. Finally,the numerical results of finite element analysis were validated by comparison with the data of the experiment. Results The flattening ratio was less than 0.0022 when the braiding angle was greater than 50 degree; as the bending angle increased, the flattening ratio also increased; when the braiding angle was 60 degree or 70 degree, the axial length of the braided stent had almost no effect on the flattening ratio; when the braiding angle was 50 degree, the flatten ratio gradually decreased as the axial length of the stent increased. The braiding angle was 30 degree, the nominal diameter increased from 2mm to 5mm, and the flattening ratio varied from 0.26 to 0.46. The flatten ratio increased rapidly from close 0 to 0.607 as the number of wires increased from 12 to 48 (braiding angle was 30 degree and the axial length was 35 mm). Conclusions Numerical simulation of flattening phenomenon in braided stent during bending deformation can provide theoretical guidance for the structural design of braided stents in  clinical applications.

參考文獻(xiàn):

[1] 喬愛科,顧兆勇,孟憲龍,等.不同結(jié)構(gòu)支架植入蜿蜒型顱內(nèi)動(dòng)脈瘤的仿真研究[J].北京工業(yè)大學(xué)學(xué)報(bào),2011,37(5):781-787.

Qiao A, Gu Z, Meng X, et al. Simulation of intervention for basilar sinuous aneurysms with different structural stent[J]. Journal of Beijing University of Technology, 2011,37(5): 781-787.

[2] 陳雪,喬愛科.支架治療動(dòng)脈瘤流固耦合數(shù)值模擬的周期重復(fù)性研究[J].北京生物醫(yī)學(xué)工程,2012,31(5):450-456.

Chen X, Qiao A. Periodic repeatability of FSI numerical simulation for stented aneurysm[J]. Beijing Biomedical Engineering, 2012, 31(5): 450-456.

[3] Kim JH, Kang TJ, Yu WR. Mechanical modeling of self-expandable stent fabricated using braiding technology[J]. Journal of Biomechanics,2012,41:3202-3212.

[4] McKenna CG, Vaughan TJ. An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103(3): 103549.

[5] Ma D, Dargush G F, Natarajan S K, et al. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms[J]. Journal of Biomechanics,2012,45(13):2256-2263.

[6] Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wires under dry and wet conditions[J]. American Journal of Orthodontics,1986,89: 485-491.

[7] Takashima K, Shimomura R, Kitou T, et al. Contact and friction between catheter and blood vessel[J]. Tribology International,2007,40:319-328.

[8] Jedwab MR, Clerc CO. A study of the geometrical and mechanical properties of a self-expanding metallic stent-theory and experiment[J]. Journal of Applied Biomaterials,1993,4: 77-85.

[9] Fu W, Xia Q. Interaction between flow diverter and parent artery of intracranial aneurysm: a computational study[J]. Applied Bionics and Biomechanics,2017,3751202.

[10] Fu W, Cheng G, Yan R, et al. Numerical investigations of the flexibility of intravascular braided stent[J]. Journal of Mechanics in Medicine and Biology,2017,17(4):1750075.

[11] Zou Q, Xue W, Lin J, et al. Mechanical characteristics of novel polyester/NiTi wires braided composite stent for the medical application[J]. Results in Physics, 2016, 6: 440-446.

[12] Zheng Q, Dong P, Li Z, et al. Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires[J]. Nanotechnology Reviews, 2019, 8(1): 168-174.

[13] Freitas AFDP, Araujo MD, Zu WW, et al. “development of weft-knitted and braided polypropylene stents for arterial implant[J]. Journal of the Textile Institute, 2010,101(12): 1027-1034.

[14] Fu W, Xia Q, Luo B, et al. Numerical investigations of the mechanical properties of braided vascular stents [J]. Bio-Medical Materials and Engineering, 2018, 29: 81-94.

[15] Wang CE, Zhang PH. In vitro degradation behaviours of pdo monofilament and its intravascular stents with braided structure[J]. AUTEX Research Journal, 2016, 16(2): 80-89.

[16] Suzuki T, Takao H, Fujimura S, et al. Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties[J]. Journal of NeuroInterventional Surgery, 2017, 9: 999-1005.

[17] MacTaggart JN, Phillips NY, Lomneth C, et al. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion[J]. Journal of Biomechanics, 2014, 47,2249–2256.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]