51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于骨骼材料分布特征的髖關節(jié)有限元模型建立及其應力分析

Hip joint finite element modeling and its stress analysis based on the distribution characteristics of bone materials

作者: 張馨元  丁曉紅  段朋云 
單位:上海理工大學機械工程學院(上海 200093)
關鍵詞: 髖關節(jié);DICOM數(shù)據(jù);三維重建;材料屬性;有限元分析 
分類號:R318.01
出版年·卷·期(頁碼):2020·39·5(462-470)
摘要:

目的  建立包含韌帶的髖關節(jié)有限元模型,分析其在單腿站立情況下的應力分布情況及傳遞趨勢,以期為髖關節(jié)內(nèi)固定術、置換手術以及其他髖關節(jié)力學基礎研究提供精確模型和依據(jù)。方法  通過CT掃描獲得人體髖關節(jié)的DICOM數(shù)據(jù),導入軟件Mimics10.0,以每塊骨骼10種材料屬性來模擬骨骼材料的各向異性特征來進行三維重建。然后將初始模型導入軟件Hyperworks12.0,以多節(jié)點的彈簧單元模擬韌帶束結構,建立包含髂股韌帶、恥股韌帶、坐股韌帶的髖關節(jié)有限元模型,分析該模型在單腿站立載荷作用下的應力分布情況。結果 在該載荷作用下,髖骨的應力在坐骨大切跡、弓狀線區(qū)域及恥骨支區(qū)域分布較為集中,髖臼的臼頂處應力最大;股骨近端的應力在股骨頭、股骨頸的內(nèi)側區(qū)域及上方區(qū)域、小轉(zhuǎn)子下方的股骨干區(qū)域以及大轉(zhuǎn)子下方的股骨干區(qū)域分布較為集中;髖骨內(nèi)側主要承受壓應力,外側主要承受拉應力;股骨頭上側區(qū)域、股骨頸外側、股骨干外側受拉應力,股骨頭下側區(qū)域、股骨頸內(nèi)側、股骨干內(nèi)側受拉應力。 結論  三維重建得到的髖關節(jié)有限元模型準確性較高,力學分析得出的應力集中區(qū)域與骨小梁分布致密區(qū)域相近,可為進一步探討髖關節(jié)的生物力學特性,及臨床骨盆骨折治療提供理論依據(jù)。

Objective To establish a finite element model of the hip joint containing ligaments, and to analyze the stress distribution and the trend of force transmission in the case of single-leg standing. The results of the analysis provide accurate models and evidence for hip internal fixation, replacement surgery, and other basic studies of hip mechanics. Methods The DICOM data of human hip joints were obtained by CT scan, import the data to Mimics 10.0 and perform three-dimensional reconstruction, the anisotropy of the bone material was simulated by 10 material properties of each bone to perform 3D reconstruction. Then ,we imported the original model into Hyperworks12.0, used the multi-node spring unit simulates the ligament bundle structure, established the hip joint finite element model including iliofemoral ligament ,pubofemoral ligament and ischiofemoral  ligament, and analyzed the stress distribution of the model under single-leg standing load. Results The stress of the hip bone was more concentrated in the ischial large notch, arcuate line region, and pubic symphysis region. The acetabular sacral dome had the maximal stress; the stress of the proximal femur was more concentrated in the medial and upper regions of the femoral head and femoral neck, the femoral region below the trochanter, and the femoral region below the greater trochanter. The inner side of the hip was mainly subjected to compressive stress, and the lateral side was mainly subjected to tensile stress; the upper part of the femoral head, the lateral femoral neck, the lateral femoral shaft were subjected to tensile stress, the lower part of the femoral head, the medial femoral neck, and the medial femoral shaft were subjected to tensile stress. Conclusions By comparing the anatomical data of hip joint, the accuracy of hip joint finite element model obtained by three-dimensional reconstruction is higher. The stress concentration region obtained is similar to the dense distribution of trabecular bone, and the results obtained by  analysis are credible, which provides a theoretical basis for further exploring the biomechanical characteristics of hip joints, the mechanism of pelvic fractures, and the treatment of clinical pelvic fractures.

參考文獻:

[1] 陳紅,歐陽鋼. 補充和替代醫(yī)學防治骨質(zhì)疏松癥的研究現(xiàn)狀與展望[J].中國骨質(zhì)疏松雜志,2014,20(11):1371—1374.

Chen H, Ouyang G. The present research and prospect of complementary and alternative medicine for prevention and treatment of osteoporosis[J].Chinese Journal of Osteoporosis, 2014, 20(11):1371-1374.

[2] El’Sheikh HF,  MacDonald BJ, Hashmi MSJ. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading [J]. Journal of Materials Processing Tech. 2003,143/144(1):249-255.

[3] Beek M, Koolstra JH, van Ruijven IJ, et al. Three-dimensional finite element analysis of the human temporomandibular joint disc. J Biomech 2000(33):307-316.

[4] 裴葆青,王田苗,王軍強.松質(zhì)骨微觀骨小梁結構的生物力學有限元分析[J].北京生物醫(yī)學工程,2008,27(2):120-122.

Pei BQ, Wang TM, Wang JQ. The comprehensive biomechanical analysis of m icrocosmic trabecular structure of cancellous bone [J]. Beijing Biomedical Engineering, 2008,27(2):120-122.

[5] 張國棟, 廖維靖, 陶圣祥, 等.股骨有限元分析賦材料屬性的方法[J].中國組織工程研究與臨床康復,  2009, 13 (43):8436-8441.

Zhang Gd, Liao Wj, Tao Shx. Methods for material assignment of finite element analysis with femurs[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009,13(43):8436-8441.

[6] 呂龍, 寇伯龍, 曹力. Zweymuller假體在人工全髖關節(jié)置換術中的應用[M]. 北京:人民軍醫(yī)出版社, 2013.

Lyu L, Kou Bl, Cao L. The clinical practice of Zweymuller implant for total hip arthroplasty[M]. Beijing:People’s Military Medical Press, 2013.

[7] Zou ZM, Chavez-Arreola A, Mandal P, Board TN, Alonso-Rasgado T. Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis[J].Journal of Orthopaedic Research. 2013,31(3):472-479.

[8] Liu L, Ecker T, Xie L,et al. Biomechanical validation of computer assisted planning of periacetabular osteotomy: A preliminary study based on finite element analysis[J]. Medical Engineering and Physics,2015,37(12).

[9] 丁海,朱振安.髖臼的解剖形態(tài)及生物力學研究進展[J].醫(yī)用生物力學,2008,23(05):411-414.

Ding H, Zhu ZA. Recent advances in anatomy and biomechanics of acetabulum [J]. Journal of Medical Biomechanics,2008,23(05):411-414.

[10] 何亞奇,張雪林,唐秉航.基于DICOM數(shù)據(jù)構建髖骨三維有限元模型[J].華中科技大學學報(醫(yī)學版),2008,37(2):251-254.

He YQ, Zhang Xl, Tang BH. Construction of Three-dimensional finite element model of hipbone based on DICOM data [J]. Acta Medicinae Universitatis Scientiae Technologiae Huazhong, 2008,37(2):251-254.

[11] 汪金平,楊天府,鐘鳳林.股骨生物力學特性的有限元分析[J]. 中華創(chuàng)傷骨科雜志, 2005, 7(10): 931-934.

Wang Jp, Yang Tf, Zhong Fl. Finite element analysis of the biomechanics of human femur[J]., Chinese Journal of Orthopaedic Trauma 2005, 7(10): 931-934.

[12] 鄭琦,廖勝輝,石仕元,等.個性化全骨盆三維有限元建模及骶髂關節(jié)骨折脫位模擬[J].醫(yī)用生物力學,2008,23(4):296-300.

Zheng Q, Liao SH, Shi SY,et al. Patient-specific FE modeling of whole pelvis and simulation of sacroiliac joint fracture [J]. Journal of Medical Biomechanics, 2008,23(4):296-300.

[13] Phillips ATM,Pankaj P,Howie CR,et al. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[J]. Medical Engineering and Physics,2006, 29(7):739-748.

[14] 張春才,蘇佳燦,禹寶慶.人體骨骼數(shù)字模型仿真學[M]. 上海:第二軍醫(yī)大學出版社, 2004.

Zhang CC, Su JC, Yu BQ. Digital simulation of human skeleton[M]. Shanghai: The Second Military Medical University Press.

[15] 樊黎霞,丁光興,費王華,等.基于CT圖像的長管骨有限元材料屬性研究及實驗驗證[J].醫(yī)用生物力學,2012,27(1):102-108.

Fan LX, Ding GX, Fei WH,et al. Study and verification test on finite element materials properties of the long bone based on CT images [J]. Journal of Medical Biomechanics, 2012,27(1):102-108.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]