51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于CatBoost算法的中青年頸動脈粥樣硬化預(yù)測方法

Carotid arteriosclerosis prediction method based on CatBoost algorithm in young and middle ages

作者: 丁瑤  張小玉  許楊  高理升  孫怡寧  王世軍  馬祖長 
單位:中國科學(xué)院合肥智能機械研究所(合肥 230031);中國科學(xué)技術(shù)大學(xué)(合肥230026);大連醫(yī)科大學(xué)(遼寧大連 116044)
關(guān)鍵詞: 頸動脈粥樣硬化;  特征選擇;CatBoost;Logistic回歸;  人工神經(jīng)網(wǎng)絡(luò) 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·5(470-476)
摘要:

目的 探究CatBoost算法在中青年頸動脈粥樣硬化預(yù)測中的應(yīng)用價值,為中青年頸動脈粥樣硬化早期篩查提供一種可行的技術(shù)手段。 方法 以2016 -2018年期間在北京某醫(yī)院體檢中心進行健康體檢的2258位中青年為研究對象,根據(jù)頸動脈彩超檢查結(jié)果診斷是否有頸動脈粥樣硬化。使用下采樣技術(shù)對樣本進行平衡處理。分析變量重要性進行特征選擇,構(gòu)建CatBoost模型。利用Logistic回歸和人工神經(jīng)網(wǎng)絡(luò)兩類機器學(xué)習(xí)算法構(gòu)建模型,并與CatBoost模型進行比較分析。以靈敏度、特異性、準(zhǔn)確率及工作特征(receiver operating characteristic,ROC)曲線下的面積(area under the ROC curve, AUC)作為模型的評價指標(biāo)。 結(jié)果 CatBoost模型在測試集上的靈敏度、特異性、準(zhǔn)確率和AUC均最高,分別為82.8%,96.7%,90.3%,0.92。Logistic回歸模型和神經(jīng)網(wǎng)絡(luò)模型的靈敏度、特異性和準(zhǔn)確率均介于62.4%~73.3%之間,AUC均介于0.72~0.78之間。重要性分析表明影響中青年頸動脈粥樣硬化最重要的三個因素依次是年齡、腰高比、高密度脂蛋白膽固醇。 結(jié)論 CatBoost算法在中青年頸動脈粥樣硬化預(yù)測中的應(yīng)用具有一定的可行性。相比于其他傳統(tǒng)算法,具有較高的診斷價值。

Objective To explore the application value of CatBoost algorithm in the prediction of carotid atherosclerosis in young and middle-aged people and provide a feasible technical means for early screening of carotid arteriosclerosis in young and middle-aged people. Methods A total of 2258 young and middle-aged people who underwent a health checkup at a medical checkup center in a Beijing hospital from 2016 to 2018 were selected as the research subjects, carotid arteriosclerosis was diagnosed based on the results of carotid color doppler ultrasound. Samples were balanced using under-sampling techniques. Feature selection is performed by analyzing the importance of variables. The CatBoost prediction model was built. In addition, models were constructed using two types of machine learning algorithms, Logistic regression and artificial neural network, and compared with CatBoost model. Sensitivity, specificity, accuracy, and the ROC curve areas (AUC) were used as the evaluation indicators of the model. Results The CatBoost model had the highest sensitivity, specificity, accuracy, and AUC on the test set, which were 82.8%, 96.7%, 90.3%, and 0.92 respectively. The sensitivity, specificity and accuracy of the models constructed by Logistic regression and neural network were between 62.4% and 73.3%, and the AUCs were between 0.72 and 0.78.Importance analysis showed that the three most important factors affecting carotid arteriosclerosis in young and middle-aged people were age, waist-to-height ratio, and high-density lipoprotein cholesterol. Conclusions The CatBoost algorithm is feasible in the prediction of carotid sclerosis in young and middle-aged people. Compared with other traditional algorithms, it has higher diagnostic value.

參考文獻:

[1] Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. European Heart Journal, 2017, 39(7): 508-579.

[2] 胡盛濤, 高潤霖, 劉力生, 等. 《中國心血管病報告2018》概要[J]. 中國循環(huán)雜志, 2019, 34(3): 6-17.

    Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chin Circul J, 2019, 34(3): 6-17.

[3] 中國心血管病預(yù)防指南(2017)寫作組, 中華心血管病雜志編輯委員會. 中國心血管病預(yù)防指南(2017)[J]. 中華心血管病雜志, 2018, 46(1): 10-25.

[4] 鄧木蘭, 李河, 石美玲, 等. 廣州市番禺區(qū)農(nóng)民急性冠心病事件發(fā)病率及20年變化趨勢[J]. 中華心血管病雜志, 2014, 42(3): 236-240.

    Deng ML, Li H, Shi ML, et al. Prevalence of acute coronary heart disease among farmers in Panyu, Guangzho: a 20-year population-based study[J]. Chin J Cardiol, 2014, 42(3): 236-240

[5] Wang WZ, Jiang B, Sun HX, et al. Prevalence, incidence and mortality of stroke in china: results from a nationwide population-based survey of 480,687 Adults. [J]. Circulation, 2017, 135(8): 759.

[6] 田進偉, 符亞紅. 動脈粥樣硬化易損斑塊快速進展機制與臨床治療進展[J]. 中國動脈硬化雜志, 2019(4): 277-280.

    Tian JW, Fu YH. The mechanism of progression and clinical intervention of atherosclerotic vulnerable plaque[J]. Chinese Journal of Arteriosclerosis, 2019(4): 277-280.

[7] Pang HY, Ye YC, Ding FM, et al. Risk factors for progression of carotid intima-media thickness in patients with systemic lupus erythematosus: protocol for an observational cohort study in China[J]. BMJ Open, 2019, 9(9): e030721  .

[8] 張萌, 鄭慧, 張敏, 等 . 頸動脈不穩(wěn)定型斑塊、血脂、血壓與急性腦梗死關(guān)系的病例對照研究[J]. 中華疾病控制雜志, 2016, 20(8): 831-834.

Zhang M, Zheng H, Zhang M, et al. Case-control study on association of carotid artery unstable carotid plaque, blood lipid and blood pressure with acute cerebral infarction[J]. Chinese Journal of Disease Control & Prevention, 2016, 20(8): 831-834.

[9] 童璐莎, 姜雯紅, 嚴(yán)慎強, 等. 基于社區(qū)抽樣調(diào)查數(shù)據(jù)的頸動脈疾病預(yù)測模型[J]. 中華急診醫(yī)學(xué)雜志, 2014, 4(23): 801-805.

    Tong LS, Jiang WH, Yan SQ, et al. The predictive model of carotid angiopathy set from randomly sampled community data[J]. Chinese Journal of Emergency Medicine, 2014, 4(23): 801-805.

[10] 王琪, 李娟生, 蒲宏全, 等. 某隨訪人群頸動脈粥樣硬化發(fā)生影響因素及風(fēng)險預(yù)測能力研究[J].中華疾病控制雜志, 2019, 23(04): 382-386.

    Wang Q, Li JS, Pu HQ, et al. Influence factors and predictive ability of a risk prediction model for carotid atherosclerosis in a follow-up population[J]. Chinese Journal of Disease Control & Prevention, 2019, 23(04): 382-386.

[11] 牟冬梅, 任珂. 三種數(shù)據(jù)挖掘算法在電子病歷知識發(fā)現(xiàn)中的比較[J]. 現(xiàn)代圖書情報技術(shù), 2016, (6): 102-109.

[12] Zhang MH, Zhang X, Guo X, et al. Prognostic factors of breast cancer with machine learning method based on SEER database[J]. Beijing Biomedical Engineering, 2019, 38(5): 486-491,497.

[13] 蘇萍, 楊亞超, 楊洋, 等. 健康管理人群2型糖尿病發(fā)病風(fēng)險預(yù)測模型[J].山東大學(xué)學(xué)報(醫(yī)學(xué)版), 2017, 55(6): 82-86.

     Su P, Yang YC, Yang Y, et al. Prediction models on the onset risks of type 2 diabetes among the health management population[J]. Journal of Shandong University(Health Sciences), 2017, 55(6): 82-86.

[14] 尤曉東, 蘇崇宇, 汪毓鐸. BP神經(jīng)網(wǎng)絡(luò)算法改進綜述[J]. 民營科技, 2018 (4): 152-153.

[15] 嚴(yán)若華, 李衛(wèi), 谷鴻秋,等. Cox比例風(fēng)險回歸模型C統(tǒng)計量的計算方法及其SAS實現(xiàn)[J]. 中華疾病控制雜志, 2016, 20(9): 953-956,961.

     Yan RH, Li W, Gu HQ, et al. Calculation of C statistics for the Cox proportional hazards regression models and its implementation in SAS[J]. Chinese Journal of Disease Control & Prevention, 2016, 20(9): 953-956,961.

[16] 馬曉梅, 徐學(xué)琴, 閆國立, 等. BP神經(jīng)網(wǎng)絡(luò)和決策樹分析在重癥手足口病臨床早期預(yù)警指標(biāo)中的應(yīng)用[J]. 中國衛(wèi)生統(tǒng)計, 2019, 36(3): 381-383.

[17] 徐繼偉, 楊云. 集成學(xué)習(xí)方法:研究綜述[J]. 云南大學(xué)學(xué)報(自然科學(xué)版), 2018, 40(6): 36-46.

     Xu JW, Yang Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University(Natural Science), 2018, 40(6): 36-46.

[18] 苗豐順, 李巖, 高岑, 等. 基于CatBoost算法的糖尿病預(yù)測方法[J]. 計算機系統(tǒng)應(yīng)用, 2019, 28(9): 215-218.

     Miao FS, Li Y, Gao C, et al. Diabetes Prediction Method Based on CatBoost Algorithm[J]. Computer Systems & Applications, 2019, 28(9): 215-218.

[19] 王斌, 馮慧芬, 王芳, 等. 基于機器學(xué)習(xí)的Cat Boost模型在預(yù)測重癥手足口病中的應(yīng)用[J]. 中國感染控制雜志, 2019, 18(1): 12-16.

     Wang B, Feng HF, Wang F, et al. Application of CatBoost model based on machine learning in predicting severe hand- foot-mouth disease[J]. Chinese Journal of Infection Control, 2019, 18(1): 12-16.

 [20] Pan XF, Lai YX, Gu JQ, et al. Factors significantly associated with the increased prevalence of carotid atherosclerosis in a northeast chinese middle-aged and elderly population[J]. Medicine, 2016, 95(14): e3253.

[21] 鐘金鵬. 基于實驗室指標(biāo)的頸動脈粥樣硬化模型的建立與評價[D]. 重慶:重慶醫(yī)科大學(xué), 2011.

     Zhong JP. Establishment and evaluation of the predictive model for carotid arteriosclerosis based on laboratorial parameters[D]. Chongqing:Chongqing Medical University, 2011.

 [22] Sun Z. Aging, arterial stiffness, and hypertension[J].  Hypertension, 2015, 65(2): 252-256.

[23] Zhang ZQ, He LP, Xie XY, et al. Association of simple anthropometric indices and body fat with early atherosclerosis and lipid profiles in chinese adults[J]. Plos One, 2014, 9(8):e104361..

[24] Lee HJ, Hwang SY, Hong HC, et al. Waist-to-hip ratio is better at predicting subclinical atherosclerosis than body mass index and waist circumference in postmenopausal women[J]. Maturitas, 2015, 80(3): 323-328.

[25] Ge WZ, Faruque P, Fen W, et al. Association between anthropometric measures of obesity and subclinical atherosclerosis in Bangladesh[J]. Atherosclerosis, 2014, 232(1): 234-241.

[26] Nakajima H, Momose T, Misawa T. Prevalence and risk factors of subclinical coronary artery disease in patients undergoing carotid endarterectomy: a retrospective cohort study[J]. International Angiology, 2019, 38(4): 312-319.

[27] 劉蕾, 姜濤. 高密度脂蛋白膽固醇和高密度脂蛋白顆粒與頸動脈粥樣硬化發(fā)生及嚴(yán)重程度的相關(guān)性[J].嶺南心血管病雜志, 2017, 23(6): 673-676.

     Liu L, Jiang T. Correlations between HDL-C,HDL-P with the incidence and severity of carotid arterial atherosclerosis[J]. South China Journal of Cardiovascular Diseases, 2017, 23(6): 673-676.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]