[1] Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. European Heart Journal, 2017, 39(7): 508-579. [2] 胡盛濤, 高潤霖, 劉力生, 等. 《中國心血管病報告2018》概要[J]. 中國循環(huán)雜志, 2019, 34(3): 6-17. Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chin Circul J, 2019, 34(3): 6-17. [3] 中國心血管病預(yù)防指南(2017)寫作組, 中華心血管病雜志編輯委員會. 中國心血管病預(yù)防指南(2017)[J]. 中華心血管病雜志, 2018, 46(1): 10-25. [4] 鄧木蘭, 李河, 石美玲, 等. 廣州市番禺區(qū)農(nóng)民急性冠心病事件發(fā)病率及20年變化趨勢[J]. 中華心血管病雜志, 2014, 42(3): 236-240. Deng ML, Li H, Shi ML, et al. Prevalence of acute coronary heart disease among farmers in Panyu, Guangzho: a 20-year population-based study[J]. Chin J Cardiol, 2014, 42(3): 236-240 [5] Wang WZ, Jiang B, Sun HX, et al. Prevalence, incidence and mortality of stroke in china: results from a nationwide population-based survey of 480,687 Adults. [J]. Circulation, 2017, 135(8): 759. [6] 田進偉, 符亞紅. 動脈粥樣硬化易損斑塊快速進展機制與臨床治療進展[J]. 中國動脈硬化雜志, 2019(4): 277-280. Tian JW, Fu YH. The mechanism of progression and clinical intervention of atherosclerotic vulnerable plaque[J]. Chinese Journal of Arteriosclerosis, 2019(4): 277-280. [7] Pang HY, Ye YC, Ding FM, et al. Risk factors for progression of carotid intima-media thickness in patients with systemic lupus erythematosus: protocol for an observational cohort study in China[J]. BMJ Open, 2019, 9(9): e030721 . [8] 張萌, 鄭慧, 張敏, 等 . 頸動脈不穩(wěn)定型斑塊、血脂、血壓與急性腦梗死關(guān)系的病例對照研究[J]. 中華疾病控制雜志, 2016, 20(8): 831-834. Zhang M, Zheng H, Zhang M, et al. Case-control study on association of carotid artery unstable carotid plaque, blood lipid and blood pressure with acute cerebral infarction[J]. Chinese Journal of Disease Control & Prevention, 2016, 20(8): 831-834. [9] 童璐莎, 姜雯紅, 嚴(yán)慎強, 等. 基于社區(qū)抽樣調(diào)查數(shù)據(jù)的頸動脈疾病預(yù)測模型[J]. 中華急診醫(yī)學(xué)雜志, 2014, 4(23): 801-805. Tong LS, Jiang WH, Yan SQ, et al. The predictive model of carotid angiopathy set from randomly sampled community data[J]. Chinese Journal of Emergency Medicine, 2014, 4(23): 801-805. [10] 王琪, 李娟生, 蒲宏全, 等. 某隨訪人群頸動脈粥樣硬化發(fā)生影響因素及風(fēng)險預(yù)測能力研究[J].中華疾病控制雜志, 2019, 23(04): 382-386. Wang Q, Li JS, Pu HQ, et al. Influence factors and predictive ability of a risk prediction model for carotid atherosclerosis in a follow-up population[J]. Chinese Journal of Disease Control & Prevention, 2019, 23(04): 382-386. [11] 牟冬梅, 任珂. 三種數(shù)據(jù)挖掘算法在電子病歷知識發(fā)現(xiàn)中的比較[J]. 現(xiàn)代圖書情報技術(shù), 2016, (6): 102-109. [12] Zhang MH, Zhang X, Guo X, et al. Prognostic factors of breast cancer with machine learning method based on SEER database[J]. Beijing Biomedical Engineering, 2019, 38(5): 486-491,497. [13] 蘇萍, 楊亞超, 楊洋, 等. 健康管理人群2型糖尿病發(fā)病風(fēng)險預(yù)測模型[J].山東大學(xué)學(xué)報(醫(yī)學(xué)版), 2017, 55(6): 82-86. Su P, Yang YC, Yang Y, et al. Prediction models on the onset risks of type 2 diabetes among the health management population[J]. Journal of Shandong University(Health Sciences), 2017, 55(6): 82-86. [14] 尤曉東, 蘇崇宇, 汪毓鐸. BP神經(jīng)網(wǎng)絡(luò)算法改進綜述[J]. 民營科技, 2018 (4): 152-153. [15] 嚴(yán)若華, 李衛(wèi), 谷鴻秋,等. Cox比例風(fēng)險回歸模型C統(tǒng)計量的計算方法及其SAS實現(xiàn)[J]. 中華疾病控制雜志, 2016, 20(9): 953-956,961. Yan RH, Li W, Gu HQ, et al. Calculation of C statistics for the Cox proportional hazards regression models and its implementation in SAS[J]. Chinese Journal of Disease Control & Prevention, 2016, 20(9): 953-956,961. [16] 馬曉梅, 徐學(xué)琴, 閆國立, 等. BP神經(jīng)網(wǎng)絡(luò)和決策樹分析在重癥手足口病臨床早期預(yù)警指標(biāo)中的應(yīng)用[J]. 中國衛(wèi)生統(tǒng)計, 2019, 36(3): 381-383. [17] 徐繼偉, 楊云. 集成學(xué)習(xí)方法:研究綜述[J]. 云南大學(xué)學(xué)報(自然科學(xué)版), 2018, 40(6): 36-46. Xu JW, Yang Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University(Natural Science), 2018, 40(6): 36-46. [18] 苗豐順, 李巖, 高岑, 等. 基于CatBoost算法的糖尿病預(yù)測方法[J]. 計算機系統(tǒng)應(yīng)用, 2019, 28(9): 215-218. Miao FS, Li Y, Gao C, et al. Diabetes Prediction Method Based on CatBoost Algorithm[J]. Computer Systems & Applications, 2019, 28(9): 215-218. [19] 王斌, 馮慧芬, 王芳, 等. 基于機器學(xué)習(xí)的Cat Boost模型在預(yù)測重癥手足口病中的應(yīng)用[J]. 中國感染控制雜志, 2019, 18(1): 12-16. Wang B, Feng HF, Wang F, et al. Application of CatBoost model based on machine learning in predicting severe hand- foot-mouth disease[J]. Chinese Journal of Infection Control, 2019, 18(1): 12-16. [20] Pan XF, Lai YX, Gu JQ, et al. Factors significantly associated with the increased prevalence of carotid atherosclerosis in a northeast chinese middle-aged and elderly population[J]. Medicine, 2016, 95(14): e3253. [21] 鐘金鵬. 基于實驗室指標(biāo)的頸動脈粥樣硬化模型的建立與評價[D]. 重慶:重慶醫(yī)科大學(xué), 2011. Zhong JP. Establishment and evaluation of the predictive model for carotid arteriosclerosis based on laboratorial parameters[D]. Chongqing:Chongqing Medical University, 2011. [22] Sun Z. Aging, arterial stiffness, and hypertension[J]. Hypertension, 2015, 65(2): 252-256. [23] Zhang ZQ, He LP, Xie XY, et al. Association of simple anthropometric indices and body fat with early atherosclerosis and lipid profiles in chinese adults[J]. Plos One, 2014, 9(8):e104361.. [24] Lee HJ, Hwang SY, Hong HC, et al. Waist-to-hip ratio is better at predicting subclinical atherosclerosis than body mass index and waist circumference in postmenopausal women[J]. Maturitas, 2015, 80(3): 323-328. [25] Ge WZ, Faruque P, Fen W, et al. Association between anthropometric measures of obesity and subclinical atherosclerosis in Bangladesh[J]. Atherosclerosis, 2014, 232(1): 234-241. [26] Nakajima H, Momose T, Misawa T. Prevalence and risk factors of subclinical coronary artery disease in patients undergoing carotid endarterectomy: a retrospective cohort study[J]. International Angiology, 2019, 38(4): 312-319. [27] 劉蕾, 姜濤. 高密度脂蛋白膽固醇和高密度脂蛋白顆粒與頸動脈粥樣硬化發(fā)生及嚴(yán)重程度的相關(guān)性[J].嶺南心血管病雜志, 2017, 23(6): 673-676. Liu L, Jiang T. Correlations between HDL-C,HDL-P with the incidence and severity of carotid arterial atherosclerosis[J]. South China Journal of Cardiovascular Diseases, 2017, 23(6): 673-676.
|