51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于差異代謝網(wǎng)絡(luò)的泛癌代謝分析

Pan-cancer analysis based on differential metabolic network

作者: 熊宇峰  鄭浩然 
單位:中國(guó)科學(xué)技術(shù)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院(合肥 230027)
關(guān)鍵詞: 基因表達(dá)數(shù)據(jù);代謝網(wǎng)絡(luò);基因敲除;藥物靶標(biāo);泛癌 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2020·39·5(506-512)
摘要:

目的 基因組規(guī)模代謝網(wǎng)絡(luò)模型(genome-scale metabolic model, GEM)是當(dāng)前癌癥代謝研究常用的一種分析工具,高質(zhì)量的癌癥代謝網(wǎng)絡(luò)有助于人們了解癌癥內(nèi)部的代謝特征。泛癌代謝分析需要為多種癌癥構(gòu)造代謝網(wǎng)絡(luò)模型,然而傳統(tǒng)的直接基于癌癥基因表達(dá)或蛋白質(zhì)數(shù)據(jù)進(jìn)行的網(wǎng)絡(luò)重構(gòu)方法,無(wú)法避免引入癌癥所在組織的代謝特征,從而影響探尋疾病本身的代謝特點(diǎn)。為了削弱組織代謝特征對(duì)研究的影響,更加準(zhǔn)確地提取癌癥相對(duì)正常組織細(xì)胞在代謝層面上發(fā)生的變化,提出一種基于差異代謝網(wǎng)絡(luò)的泛癌代謝分析方法。 方法 以癌癥基因組圖譜(The Cancer Genome Atlas, TCGA)數(shù)據(jù)庫(kù)中17種癌癥作為分析對(duì)象,通過(guò)分析癌癥及癌旁組織的基因表達(dá)數(shù)據(jù),采用基因芯片線性模型(linear models for microarray analysis, Limma)工具包分別提取這17種癌癥的差異表達(dá)基因,并將人類全基因組規(guī)模代謝網(wǎng)絡(luò)Recon3D作為背景網(wǎng)絡(luò),結(jié)合代謝網(wǎng)絡(luò)重構(gòu)算法FASTCORE為每種癌癥構(gòu)建差異代謝網(wǎng)絡(luò)。最后聯(lián)合多種癌癥網(wǎng)絡(luò)利用流量平衡分析(flux balance analysis, FBA)方法進(jìn)行基因敲除以及毒性測(cè)試,分析癌癥代謝共性,發(fā)現(xiàn)潛在藥物治療靶點(diǎn)。 結(jié)果 得到了每種癌癥的差異表達(dá)基因、差異代謝網(wǎng)絡(luò)模型,以及潛在的藥物靶點(diǎn),通過(guò)聯(lián)合所有癌癥進(jìn)行分析,最后得到了7個(gè)潛在的泛癌藥物靶點(diǎn),其中包括CRLS1、CTH、PTDSS1、SLC6A14、SGMS1、PKM以及PLD2。7個(gè)藥物靶標(biāo)中已經(jīng)有5個(gè)用于不同的癌癥治療策略中,而其余結(jié)果代表了潛在的藥物靶點(diǎn)。 結(jié)論 本文提出的差異代謝網(wǎng)絡(luò)模型可以有效削弱組織代謝特征對(duì)癌癥本身特征的干擾,有助于泛癌代謝分析。

Objective Genome-scale metabolic model (GEM) is currently a commonly used tools for cancer metabolism research. High-quality cancer metabolism models can help us understand the metabolic characteristics of cancer. In pan-cancer analysis we need to reconstructed connected genome-scale metabolic models for each cancer. However, the traditional way based on gene expression or protein data to construct metabolic network lead to the metabolic characteristics of cancer tissue, which influence understanding the metabolic characteristics of disease. In order to eliminate the influence of tissue metabolism on the research and accurately extract the metabolic changes of cancer relative to normal tissues, we propose a pan-cancer metabolic analysis method based on differential metabolic networks. Methods Taking 17 cancers in The Cancer Genome Atlas (TCGA) as the analysis objects, we used the linear models for microarray analysis (Limma) toolkit to determine genes that are differentially expressed between cancer and benign tissue. Then we combined differential genes, reference generic human GEM named Recon3D and metabolic network reconstruction algorithm FASTCORE to build differential metabolic networks for each cancer. Flux balance analysis (FBA) was used for metabolic flux analysis and gene knockout on a variety of cancer networks to study the common features of cancer metabolism and potential drug targets. Results In the experiments, we obtained differentially expressed genes, differential metabolic network models, and potential drug targets for each type of cancer. Through the analysis of all cancers, seven potential pan-cancer drug targets were obtained, including CRLS1, CTH, PTDSS1, SLC6A14, SGMS1, PKM, and PLD2. Five of the seven drug targets had already been used in different cancer treatment strategies, while the remaining drug targets represent new potential drugs. Conclusion The differential metabolic network model proposed in this paper can effectively eliminate the differences between different tissues, which is helpful to studying the metabolic characteristics of pan-cancer.

參考文獻(xiàn):

[1] DeBerardinis R J, Chandel N S. Fundamentals of cancer metabolism[J]. Science advances, 2016, 2(5): e1600200.

[2] Luengo A, Gui D Y, Vander Heiden M G. Targeting metabolism for cancer therapy[J]. Cell chemical biology, 2017, 24(9): 1161-1180.

[3] Pavlova N N, Thompson C B. The emerging hallmarks of cancer metabolism[J]. Cell metabolism, 2016, 23(1): 27-47.

[4] Zhang C, Hua Q. Applications of genome-scale metabolic models in biotechnology and systems medicine[J]. Frontiers in physiology, 2016, 6: 413.

[5] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular systems biology, 2014, 10(3).

[6] Gatto F, Miess H, Schulze A, et al. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism[J]. Scientific reports, 2015, 5: 10738.

[7] Gatto F, Ferreira R, Nielsen J. Pan-cancer analysis of the metabolic reaction network[J]. Metabolic engineering, 2020, 57: 51-62.

[8] Brunk E, Sahoo S, Zielinski D C, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism[J]. Nature biotechnology, 2018, 36(3): 272.

[9] Vlassis N, Pacheco M P, Sauter T. Fast reconstruction of compact context-specific metabolic network models[J]. PLoS computational biology, 2014, 10(1): e1003424.

[10] Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic acids research, 2015, 43(7): e47-e47.

[11] Mardinoglu A, Agren R, Kampf C, et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease[J]. Nature communications, 2014, 5: 3083.

[12] Thiele I, Swainston N, Fleming R M T, et al. A community-driven global reconstruction of human metabolism[J]. Nature Biotechnology, 2013, 31(5): 419-425.

[13] Sharma B, Kanwar S S. Phosphatidylserine: A cancer cell targeting biomarker[C]//Seminars in cancer biology. Academic Press, 2018, 52: 17-25.

[14] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0[J]. Nature protocols, 2019, 14(3): 639.

[15] Wang H, Marci?auskas S, Sánchez B J, et al. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor[J]. PLoS computational biology, 2018, 14(10): e1006541.

[16] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular systems biology, 2014, 10(3).

[17] Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anti-cancer targets based on expression data in hepatocellular carcinoma[J]. Frontiers in physiology, 2018, 9: 916.

[18] Vallabhapurapu S D, Blanco V M, Sulaiman M K, et al. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium[J]. Oncotarget, 2015, 6(33): 34375.

[19] Sikder M O F, Yang S, Ganapathy V, et al. The Na+/Cl?-Coupled, Broad-Specific, Amino Acid Transporter SLC6A14 (ATB 0,+): Emerging Roles in Multiple Diseases and Therapeutic Potential for Treatment and Diagnosis[J]. The AAPS journal, 2018, 20(1): 12.

[20] Rozhkova A V, Zinovyeva M V, Sass A V, et al. Expression of sphingomyelin synthase 1 (SGMS1) gene varies in human lung and oesophagus cancer[J]. Molekuliarnaia biologiia, 2014, 48(3): 395-402.

[21] Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis[J]. Journal of Biological Chemistry, 2014, 289(33): 22557-22566.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]