51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
群腦協(xié)作的協(xié)同式腦-機(jī)接口研究進(jìn)展

Research progress of collaborative brain-computer interface for group brain collaboration

作者: 張力新  陳小翠  顧斌  陳龍  李岑博  明東 
單位:天津大學(xué)精密儀器與光電子工程學(xué)院(天津 300072);天津大學(xué)醫(yī)學(xué)工程與轉(zhuǎn)化醫(yī)學(xué)研究院(天津 300072)
關(guān)鍵詞: 協(xié)同腦-機(jī)接口;目標(biāo)檢測(cè);運(yùn)動(dòng)控制;特征融合;決策融合 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2020·39·5(535-541)
摘要:

傳統(tǒng)的非侵入型腦-機(jī)接口(brain-computer interface,BCI)系統(tǒng)通常采用單人-單機(jī)架構(gòu),其信息傳輸速率較低且魯棒性差,難以滿足高精度、多指令、短時(shí)限等復(fù)雜作業(yè)的性能需求。隨著傳感和信息技術(shù)的迅速發(fā)展,面向多人-多機(jī)的協(xié)同式腦-機(jī)接口系統(tǒng)(collaborative BCI, cBCI)應(yīng)運(yùn)而生。cBCI可充分發(fā)揮群體智慧優(yōu)勢(shì),深入挖掘群體神經(jīng)響應(yīng)信息,從而更高效地完成人-機(jī)交互作業(yè)。本文綜述了cBCI的基本系統(tǒng)架構(gòu),并結(jié)合現(xiàn)有研究分析其在決策與控制兩個(gè)應(yīng)用場(chǎng)景下的作業(yè)特點(diǎn),討論了面向不同作業(yè)需求和系統(tǒng)架構(gòu)的群體神經(jīng)信息融合算法的優(yōu)勢(shì)與不足,展望了cBCI的系統(tǒng)優(yōu)化方向與應(yīng)用研究的發(fā)展趨勢(shì)。

Traditional noninvasive brain-computer interface system usually adopt single-user and single-machine architecture. It’s difficult to meet the requirements of high accuracy, multiple instruction and short time delay, because of the low information transmission rate and poor robustness. With the development of sensing and information technology, the collaborative brain-computer interface based on multi-users and multi-machines has emerged. In order to complete the human- machine interaction work more efficiently, cBCI could give full play to the collective intelligence and deep digging in neural response information of group. This paper reviewed the basic architecture of the cBCI system and its application to decision-making and control. It also discussed the advantages and disadvantages of fusion algorithm for group neural response information. The system optimization direction and research trend of cBCI were proposed in the end.

參考文獻(xiàn):

[1] 張力新, 賈義紅, 許敏鵬,等. 基于Chirplet變換的變頻視覺(jué)誘發(fā)電位腦-機(jī)接口研究[J]. 納米技術(shù)與精密工程, 2014,12(3):157-161. 

Zhang LX, Jia YH, Xu MP, et al. Chirp stimuli visual evoked potential based brain-computer interface by chirplet transform algorithm[J]. Nanotechnology and Precision Engineering, 2014,12(3)::157-161.

[2] Minguillon J, Lopez MA, Pelayo FJ. Trends in EEG-BCI for daily-life: requirements for artifact removal[J]. Biomedical Signal Processing & Control, 2017, 31(1):407-418.

[3] Abibullaev B, Zollanvari A. Learning discriminative spatiospectral features of ERPs for accurate brain-computer interfaces[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5):2009-2020.

[4] 許敏鵬, 張力新, 明東,等. 基于SSVEP阻斷與P300特征的混合范式腦-機(jī)接口[J]. 電子學(xué)報(bào), 2013, 41(11):2247-2251. 

Xu MP, Zhang LX, Ming D, et al. A hybrid BCI based on the combination of SSVEP blocking and P300 features[J]. Acta Electronica Sinica, 2013,41(11):2247-2251.

[5] 陳龍, 張磊, 王仲朋,等. 功能性電刺激對(duì)運(yùn)動(dòng)想象皮層活動(dòng)的影響研究[J]. 儀器儀表學(xué)報(bào), 2019, 40(2):75-81. 

Chen L, Zhang L, Wang ZP, et al. Research on the effect of FES on cortex activities of motor imagery[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):75-81. 

[6] Miao Y, Yin E, Allison BZ, et al. An ERP-based BCI with peripheral stimuli: validation with ALS patients[J]. Cognitive Neurodynamics, 2019,14(1):21-33.

[7] 明東, 王坤, 何峰,等. 想象動(dòng)作誘發(fā)生理信息檢測(cè)及其應(yīng)用研究:回顧與展望[J]. 儀器儀表學(xué)報(bào), 2014, 35(9):1921-1931.

Ming D, Wang K, He F, et al. Study on physiological information detection and application evoked by motor imagery: Review and prospect[J]. Chinese Journal of Scientific Instrument, 2014, 35 (9): 1921-1931.

[8] Maksimenko V, Grubov V. ognitive interaction during a collaborative attentional task[C]// 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics . Innopolis, Russia: DCNAIR, 2019:119-121.

[9] Bang D, Frith CD. Making better decisions in groups[J]. Royal Society Open Science,2017, 4(8):170193.

[10] Le GS, Manzolli J, Verschure PFMJ. Disembodied and Collaborative Musical Interaction in the Multimodal Brain Orchestra[C]// Caramiaux, Baptiste, International Conference on New Interfaces for Musical Expression. Sydney, Australia:NIME,2010:309-314.

[11] Malone TW, Laubacher R, Dellarocas C. The collective intelligence genome[J]. IEEE Engineering Management Review, 2010, 38(3):38-52.

[12] Wang YJ, Jung TP. A collaborative brain-computer interface for improving human performance[J] .Plos One ,2011,6: e20422. 

[13] Matran-fernandez A, Poli R. Collaborative brain-computer interfaces for target localisation in rapid serial visual presentation[C]// 2014 6th Computer Science and Electronic Engineering Conference . Colchester:CEEC, 2014:127-132.

[14] 鄭玉甫, 許敏鵬, 明東. 腦-機(jī)接口操控效果差異及其預(yù)測(cè)研究綜述[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào), 2018, 37(6):112-118.

Zheng YF, Xu MP, Ming D. Research advancements on the variation and prediction of brain control performance for brain-computer interfaces(BCIs)[J]. Chinese Journal of Biomedical Engineering, 2018, 37 (6): 112-118.

[15] Kurvers RHJM, Herzog SM, Hertwig R, et al. Boosting medical diagnostics by pooling independent judgments[J]. Proceedings of the National Academy of Sciences, 2016, 113(31):8777-8782.

[16] Bhattacharyya S, Valeriani D, Cinel C, et al.Collaborative brain-computer interfaces to enhance group decisions in an outpost surveillance task [C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society .Berlin, Germany:EMBC, 2019:3099-3102

[17] Hilchey MD, Antinucci V, Lamy D, et al. Is attention really biased toward the last target location in visual search? Attention, response rules, distractors, and eye movements[J]. Psychonomic Bulletin & Review, 2019(14):1-9.

[18] Valeriani D, Poli R, Cinel C. Enhancement of group perception via a collaborative brain-computer interface[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(6):1238-1248.

[19] Hatamikia S, Nasrabadi AM. Subject independent BCI based on LTCCSP method and GA wrapper optimization[C]// Biomedical Engineering. 2015 22nd Iranian Conference on Biomedical Engineering  .Tehran : IEEE, 2016:405-409.

[20] Valeriani D, Poli R, Cinel C. A collaborative Brain-Computer Interface for improving group detection of visual targets in complex natural environments[C]. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier, France:IEEE,2015:25-28.

[21] Zhou YJ, Gu B, Dai TF, et al. A Multiuser Collaborative Strategy for MI-BCI System[C]// 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). Shanghai: IEEE, 2018:1-5.

[22] Touyama H. A collaborative BCI system based on P300 signals as a new tool for life log indexing[C]// 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA:IEEE, 2014: 2843-2846. 

[23] Yun K, Stoica A. Improved target recognition response using collaborative brain-computer interfaces[C]// 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).Budapest:IEEE, 2016: 2220-2223. 

[24] Yuan P, Wang Y, Wu W, et al. Study on an online collaborative BCI to accelerate response to visual targets[C]// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA:IEEE, 2012: 1736-1739. 

[25] Kurvers RHJM, Herzog SM, Hertwig R, et al. Boosting medical diagnostics by pooling in-dependent judgments[J]. Proceedings of the Na-tional Academy of Sciences, 2016, 113(31):8777-8782.

[26] Solon A, Gordon S, Mcdaniel J, et al. Collaborative brain-computer interface for human interest detection in complex and dynamic settings[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Miyazaki, Japan:IEEE, 2018:970-975. 

[27] Yuan P, Wang YJ, Gao XR, et al. A collaborative brain-computer interface for accelerating human decision making[C]// Stephanidis C,Antona M. Proceedings of the 7th international conference on Universal Access in Human-Computer Interaction. Heidelberg, German :Springer-Verlag, 2013:672-681.

[28] Poli R, Valeriani D, Cinel C. Collaborative Brain-Computer Interface for Aiding Decision-Making[J]. Plos One, 2014, 9(7): e102693.

[29] Bianchi L, Gambardella F, Liti C, et al.Group study via collaborative BCI[C]// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy,:IEEE,2019: 272-276

[30] Kao AB, Couzin ID. Decision accuracy in complex environments is often maximized by small group sizes[J]. Proceedings of the Royal Society B: Biological Science, 2014,281(1784):20133305.

[31] 孫炳海, 馮小丹, 趙肖倩,等. 超掃描在社會(huì)互動(dòng)腦機(jī)制研究中的應(yīng)用:基于人際同步的視角[J]. 蘇州大學(xué)學(xué)報(bào)(教育科學(xué)版), 2018, 6(4):38-47.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]