51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種個性化動態(tài)腦功能網(wǎng)絡(luò)的構(gòu)建與特征提取方法

A personalized dynamic brain functional network and feature extraction

作者: 張娜  孫炎珺  李明愛 
單位:北京工業(yè)大學(xué)信息學(xué)部(北京 100124);計算智能與智能系統(tǒng)北京市重點實驗室(北京 100124)
關(guān)鍵詞: 運動想象腦電信號;  動態(tài)腦功能網(wǎng)絡(luò);  特征提取;  個性化皮爾遜相關(guān)系數(shù);  共空間模式 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·6(551-560)
摘要:

目的 為了研究運動想象過程中腦功能網(wǎng)絡(luò)(Brain Functional Network, BFN)的時頻變化特征及對運動想象任務(wù)識別的影響,本文提出一種個性化皮爾遜相關(guān)系數(shù)(Personalized Pearson Correlation Coefficient, PPCC)及動態(tài)BFN的構(gòu)建與特征提取方法。方法 首先,對各受試者運動想象腦電(Motor Imagery EEG, MI-EEG)頻帶范圍進(jìn)行兩級篩選,獲得其最優(yōu)頻帶;然后,將運動想象時間段進(jìn)行分割,計算各子時段最優(yōu)頻帶MI-EEG的PPCC,并用于構(gòu)建個性化的動態(tài)BFN;進(jìn)而,計算各個BFN的度作為網(wǎng)絡(luò)特征,并將多時段的網(wǎng)絡(luò)特征串行融合獲得特征向量;最后,針對BCI Competition III Data Set IIIa和BCI Competition IV Data Set 2a數(shù)據(jù)集,采用支持向量機檢驗特征的有效性。結(jié)果 在兩個公共數(shù)據(jù)集上,本文方法的10×10折交叉驗證最高識別率分別為100.00%和68.84%。與基于共空間模式和基于PCC的BFN特征提取方法相比,具有明顯的優(yōu)勢,雙樣本t檢驗的結(jié)果也充分表明了PPCC的優(yōu)越性。結(jié)論 與PCC相比,基于PPCC能構(gòu)建出可客觀地展現(xiàn)運動想象個性化特點的動態(tài)BFN,反映了不同受試者運動想象時大腦激活的差異性,及其在時域和頻域同時呈現(xiàn)的動態(tài)變化特點,有效增強了特征提取的自適應(yīng)性。

Objective In order to study the time-frequency variation characteristics of Brain Functional Network (BFN) in the process of motor imagery (MI) and the impact on the recognition of MI tasks, this paper proposes a Personalized Pearson Correlation Coefficient (PPCC) and dynamic BFN and feature extraction method. Methods First, two-stage screening is performed on each subject's Motor Imagery EEG (MI-EEG) frequency band range to obtain the optimum frequency band; Then,the MI time period is segmented into several sub-periods,the PPCC of the optimum frequency band MI-EEG is calculated for each sub-period, and personalized dynamic BFNs are constructed based on the PPCC values; Furthermore, the degree of each BFN is calculated as network features, which are serially fused to obtain feature vectors;Finally,the feature vectors are evaluated by support vector machine on the BCI Competition III Data Set IIIa and BCI Competition IV Data Set 2a. Results On the two public datasets, the 10×10 fold highest recognition rates achieve 100.00% and 68.84%, which have obvious advantages compared with common spatial pattern-based and PCC-based BFN feature extraction methods. The two-sample t-test clearly shows its superiority as well. Conclusions Compared with PCC, the dynamic BFNs which objectively express the personalized characteristic of MI-EEG can be constructed based on PPCC, reflect the extinctions of activated brain areas caused by MI among different subjects as well as the characteristics of dynamic changes exhibited in time and frequency domains simultaneously, and effectively enhance the adaptivity of feature extraction.

參考文獻(xiàn):

[1] 李明愛, 羅新勇, 崔燕,等. 基于MI-BCI的上肢在線運動康復(fù)原型系統(tǒng)[J]. 北京生物醫(yī)學(xué)工程, 2017, 36(3):273-278.
Li MA,Luo XY,Cui Y, et al. MI-BCI based online prototype system for upper limb rehabilitation[J]. Beijing Biomedical Engineering,2017,36(3):273-278.
[2] Nicolas-Alonso LF, Corralejo R, Gomez-Pilar J, et al. Adaptive stacked generalization for multiclass motor imagery-based brain computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(4): 702-712.
[3] Bassett DS,  Bullmore E. Small-world brain networks[J]. Neuroscientist, 2006, 12(6): 512-523.
[4] 李明愛, 南琳, 孫炎珺. 基于鎖相值和圖論的腦功能網(wǎng)絡(luò)特征提取方法[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(1): 15-21.
Li MA,Nan L,Sun YJ.Applying phase locking value and graph theory for feature extraction of brain functional network[J]. Beijing Biomedical Engineering,2019, 38(1): 15-21.
[5] Falzon O, Camilleri KP, Muscat J. Complex-valued spatial filters for task discrimination[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society , 2010,2010: 4707-4710.
[6] Zarei A, Ghassemi F, Moradi MH. Information based source number estimation for probabilistic common spatial pattern in motor imagery BCI system[C]//2016 24th Iranian Conference on Electrical Engineering (ICEE). Shiraz, Iran: IEEE Press, 2016: 555-560.
[7] Jin J, Miao YY, Daly I, et al. Correlation-based channel selection and regularized feature optimization for MI-based BCI[J]. Neural Networks, 2019, 118: 262-270.
[8] Stefano Filho CA, Attux R, Castellano G. EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches[J]. PeerJ, 2017, 5: e3983.
[9] Petti M, Pichiorri F, Toppi J, et al. Bci-assisted training for upper limb motor rehabilitation: estimation of effects on individual brain connectivity and motor functions[C]//Proceedings of the 7th Graz Brain-Computer Interface Conference 2017. Graz, Austria, IEEE Press, 2017: 406-409.
[10] Kong W, Guo X, Zhao X, et al. Spectral analysis of brain function network for the classification of motor imagery tasks[C]//2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai: IEEE Press, 2011, 2: 850-853.
[11] Li J, Wang Y, Zhang L, et al. Decoding EEG in cognitive tasks with time-frequency and connectivity masks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8(4): 298-308.
[12] Bono V, Biswas D, Das S, et al. Classifying human emotional states using wireless EEG based ERP and functional connectivity measures[C]//2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). Las Vegas, NV, USA: IEEE Press, 2016: 200-203.
[13] Rodrigues PG, Stefano Filho CA, Attux R, et al. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces[J]. Medical & Biological Engineering & Computing, 2019, 57(8): 1709-1725.
[14] Zhang R, Li X, Wang Y, et al. Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject[J]. IEEE Access, 2019, 7: 74490-74499.
[15] Stefano Filho CA, Attux R, Castellano G. Can graph metrics be used for EEG-BCIs based on hand motor imagery?[J]. Biomedical Signal Processing and Control, 2018, 40: 359-365.
[16] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]