51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
密網(wǎng)支架治療顱內(nèi)分叉動脈瘤數(shù)值模擬研究

Numerical simulation of intervention for cerebral bifurcate aneurysm by dense braided stent

作者: 付文宇  李立新  任鵬飛  喬愛科 
單位:北京聯(lián)合大學(xué)機器人學(xué)院( 北京 100027) 北京工業(yè)大學(xué)生命學(xué)院(北京100124)
關(guān)鍵詞: 編織支架;  顱內(nèi)分叉動脈瘤;  壁面切應(yīng)力;  血流速度 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·6(561-568)
摘要:

目的 對密網(wǎng)支架虛擬植入顱內(nèi)分叉動脈瘤過程進行數(shù)值模擬研究,探討植入密網(wǎng)支架對顱內(nèi)分叉動脈瘤腔的血流動力學(xué)的影響,為密網(wǎng)支架是否適合介入治療顱內(nèi)分叉動脈瘤進行初步的力學(xué)計算研究。方法 利用有限元軟件ABAQUS模擬密網(wǎng)支架植入顱內(nèi)分叉動脈瘤的過程,得到變形后的支架模型。在ANSYS CFX中對顱內(nèi)分叉動脈瘤模型及植入密網(wǎng)支架的分叉動脈瘤模型進行流體計算,比較植入支架前后動脈瘤腔中流線變化情況、瘤腔中血流平均速度值,動脈瘤壁面壓力及壁面切應(yīng)力變化情況。結(jié)果 支架-微導(dǎo)管模型可以很好地模擬植入全過程。特別發(fā)現(xiàn)在載瘤動脈局部支架和血管壁貼合不良; 植入支架后動脈瘤腔平均血流速度在收縮期加速和減速階段分別降低了71.4%和17.2%;植入支架后動脈瘤面切應(yīng)力降低了,但壁面壓力略有增加。 結(jié)論 密網(wǎng)支架可降低顱內(nèi)分叉動脈瘤腔血流速度,但需特別關(guān)注密網(wǎng)支架和載瘤動脈局部貼合不良問題,其有可能導(dǎo)致載瘤動脈狹窄。

Objective The numerical simulation of the process that the braided stent is virtually implanted into the intracranial bifurcation aneurysm is carried out. The hemodynamics of the aneurismal cavity before and after the implantation of the braided stent are compared. A preliminary study of mechanical calculation is carried out whether the dense stent is suitable for interventional treatment of cerebral bifurcate aneurysm. Methods The finite element software ABAQUS is used to simulate the process of implanting dense braided stent into intracranial bifurcation aneurysm and obtaining stent model which is implanted into parent artery. ANSYS CFX is used to perform fluid calculations on the intracranial bifurcation aneurysm model and the bifurcate aneurismal model which is implanted with dense braided stent. The changes of streamlines and the average speed of blood flow in the aneurismal cavity before and after the stent implantation, and the changes of the pressure and the wall shear stress on aneurismal wall were compared. Results The whole implantation process of the stent-microcatheter model is well simulated. In particular, poor apposition between stent and vessel walls are found in parent artery locally. After the braided stent implantation, the mean blood flow speed in the aneurismal cavity decreased by 71.4% and 17.2% during the systolic acceleration and deceleration phases, respectively. After the implantation of the braided stent, the aneurismal wall shear stress is reduced, but the wall pressure increases slightly. Conclusions The dense braided stent can reduce the blood flow speed in the intracranial bifurcate aneurismal cavity. Special attention needs to be paid to the poor apposition between the braided stent and the parent artery, which may lead to narrowing of the parent artery.

參考文獻:

[1] 付文宇,喬愛科. 5種支架對頸內(nèi)動脈瘤血液動力學(xué)影響的數(shù)值研究[J]. 醫(yī)用生物力學(xué),2010,25(5): 344-351.
Fu WY, Qiao AK. Numerical research of hemodynamics effects on internal carotid aneurysm with five types of stents[J]. Journal of Medical Biomechanics, 2010, 25(5): 344-351.
[2] 王奎重,袁紹紀. 血流導(dǎo)向支架治療顱內(nèi)動脈瘤的相關(guān)并發(fā)癥現(xiàn)狀[J]. 中華神經(jīng)醫(yī)學(xué)雜志, 2012 , 11 (5) :535-537.
Wang KZ, Yuan SJ. Complications of flow diverter in treating intracranial aneurysms[J]. Chinese Journal of Neuromedicine, 2012 , 11 (5):535-537.
[3] Pumar JM, Lete I, Pardo MI, et al. LEO stent monotherapy for the endovascular reconstruction of fusiform aneurysm of the middle cerebral artery[J]. American Journal of Neuroradiology, 2008, 29(9): 1775-1776.
[4] Cekirge HS, Yavuz K, Geyik S, et al. A novel ‘Y’ stent flow diversion technique for the endovascular treatment of bifurcation aneurysms without endosaccular coiling[J]. American Journal of Neuroradiology, 2011, 32(7): 1262-1268.
[5] 楊鵬飛,劉建民,黃清海,等. 新型血流導(dǎo)向裝置Tubridge治療顱內(nèi)動脈瘤的初步經(jīng)驗[J]. 介入放射學(xué)雜志, 2011,20(5):357-362.
Yang PF, Liu JM, Huang QH, et al. The use of novel flow diverting device Tubridge for the treatment of intracranial aneurysms: initial experience [J]. Journal of Interventional Radiology, 2011, 20(5): 357-362.
[6] Ma D, Gary FD, Natarajan SK, et al. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms[J]. Journal of Biomechanics, 2012, 45(13): 2256-2263.
[7] Kim JH, Kang TJ, Yu WR. Mechanical modeling of self-expandable stent fabricated using braiding technology[J]. Journal of Biomechanics, 2008, 41(15): 3202-3212.
[8] 劉元早,王霖. 大腦中動脈分叉角大小與動脈瘤形成的關(guān)系[J]. 重慶醫(yī)學(xué),2016, 45(7):929-930, 933.
Liu YZ, Wang L. The relationship of the bifurcation angle size with aneurismal occurrence in the horizontal section of middle cerebral artery [J]. Chongqing Medicine,2016,45(7): 929-930, 933.
[9] Fu WY, Xia QX. Interaction between flow diverter and parent artery of intracranial aneurysm: a computational study[J]. Applied Bionics and Biomechanics, 2017, 2017: 3751202.
[10] Fu WY, Cheng G, Yan RB, et al. Numerical investigations of the flexibility of intravascular braided stent[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(4): 1750075.
[11] Janiga G, Berg P, Sugiyama S, et al. The computational fluid dynamics rupture challenge 2013—phase I: prediction of rupture status in intracranial aneurysms [J]. American Journal of Neuroradiology, 2015, 36(3): 530-536.
[12] Boussel L, Rayz V, McCulloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study[J]. Stroke, 2008, 39(11): 2997-3002.
[13] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J]. The Journal of the American Medical Association, 1999, 282(21): 2035-2042.
[14] Fu WY, Gu ZY, Meng XL, et al. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on
patient-specific model[J]. Journal of Biomechanics, 2010, 43(7): 1337-1342.
[15] Steinman DA, Hoi Y, Fahy P, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD challenge[J]. Journal of Biomechanical Engineering, 2013,135(2): 021016.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]