[1] 付文宇,喬愛科. 5種支架對頸內(nèi)動脈瘤血液動力學(xué)影響的數(shù)值研究[J]. 醫(yī)用生物力學(xué),2010,25(5): 344-351. Fu WY, Qiao AK. Numerical research of hemodynamics effects on internal carotid aneurysm with five types of stents[J]. Journal of Medical Biomechanics, 2010, 25(5): 344-351. [2] 王奎重,袁紹紀. 血流導(dǎo)向支架治療顱內(nèi)動脈瘤的相關(guān)并發(fā)癥現(xiàn)狀[J]. 中華神經(jīng)醫(yī)學(xué)雜志, 2012 , 11 (5) :535-537. Wang KZ, Yuan SJ. Complications of flow diverter in treating intracranial aneurysms[J]. Chinese Journal of Neuromedicine, 2012 , 11 (5):535-537. [3] Pumar JM, Lete I, Pardo MI, et al. LEO stent monotherapy for the endovascular reconstruction of fusiform aneurysm of the middle cerebral artery[J]. American Journal of Neuroradiology, 2008, 29(9): 1775-1776. [4] Cekirge HS, Yavuz K, Geyik S, et al. A novel ‘Y’ stent flow diversion technique for the endovascular treatment of bifurcation aneurysms without endosaccular coiling[J]. American Journal of Neuroradiology, 2011, 32(7): 1262-1268. [5] 楊鵬飛,劉建民,黃清海,等. 新型血流導(dǎo)向裝置Tubridge治療顱內(nèi)動脈瘤的初步經(jīng)驗[J]. 介入放射學(xué)雜志, 2011,20(5):357-362. Yang PF, Liu JM, Huang QH, et al. The use of novel flow diverting device Tubridge for the treatment of intracranial aneurysms: initial experience [J]. Journal of Interventional Radiology, 2011, 20(5): 357-362. [6] Ma D, Gary FD, Natarajan SK, et al. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms[J]. Journal of Biomechanics, 2012, 45(13): 2256-2263. [7] Kim JH, Kang TJ, Yu WR. Mechanical modeling of self-expandable stent fabricated using braiding technology[J]. Journal of Biomechanics, 2008, 41(15): 3202-3212. [8] 劉元早,王霖. 大腦中動脈分叉角大小與動脈瘤形成的關(guān)系[J]. 重慶醫(yī)學(xué),2016, 45(7):929-930, 933. Liu YZ, Wang L. The relationship of the bifurcation angle size with aneurismal occurrence in the horizontal section of middle cerebral artery [J]. Chongqing Medicine,2016,45(7): 929-930, 933. [9] Fu WY, Xia QX. Interaction between flow diverter and parent artery of intracranial aneurysm: a computational study[J]. Applied Bionics and Biomechanics, 2017, 2017: 3751202. [10] Fu WY, Cheng G, Yan RB, et al. Numerical investigations of the flexibility of intravascular braided stent[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(4): 1750075. [11] Janiga G, Berg P, Sugiyama S, et al. The computational fluid dynamics rupture challenge 2013—phase I: prediction of rupture status in intracranial aneurysms [J]. American Journal of Neuroradiology, 2015, 36(3): 530-536. [12] Boussel L, Rayz V, McCulloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study[J]. Stroke, 2008, 39(11): 2997-3002. [13] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J]. The Journal of the American Medical Association, 1999, 282(21): 2035-2042. [14] Fu WY, Gu ZY, Meng XL, et al. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model[J]. Journal of Biomechanics, 2010, 43(7): 1337-1342. [15] Steinman DA, Hoi Y, Fahy P, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD challenge[J]. Journal of Biomechanical Engineering, 2013,135(2): 021016.
|