51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于水平集方法的冠狀動脈CT圖像分割

Coronary CT image segmentation based on level set method

作者: 黃山  程曉光 
單位:北京積水潭醫(yī)院放射科(北京 100035)
關(guān)鍵詞: 水平集方法;  CT圖像;  冠脈識別與分割;  FFRct;  臨床應(yīng)用 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·6(569-573)
摘要:

目的 采用水平集方法實現(xiàn)對CT圖像中冠狀動脈的高效自動識別與分割,借此簡化三維模型重建工作,從而提高FFRct整體的計算效率。方法 選取20名冠心病患者作為研究對象,提取26支狹窄冠脈血管的CT圖像。分別利用水平集方法和手動方法對CT圖像進行冠脈的識別與分割處理從而生成三維模型。利用CFD仿真方法分別獲取各冠脈段的FFR數(shù)值,并通過Bland-Altman方法分析兩種方法所得FFR的一致性,用以驗證水平集方法在冠脈識別精度上與手動方法水平的差異。結(jié)果 對比了獲取FFR數(shù)值兩種冠脈識別方法整體所需的時間。與手動方法相比,水平集方法的模型重建時間減少了10倍以上。經(jīng)檢驗,兩種冠脈識別方法的FFR數(shù)值計算結(jié)果一致性良好。結(jié)論 基于水平集方法可以實現(xiàn)CT圖像冠脈的高效自動識別,具有一定的臨床應(yīng)用意義。

Objective The level set method is used to realize efficient automatic identification and segmentation of coronary arteries in CT images, thereby simplifying the reconstruction of the three-dimensional model and improving the overall calculation efficiency of FFRct. Methods 20 patients with coronary heart disease were selected as the research objects, and CT images of 26 narrow coronary vessels were extracted. The level set method and manual method are used to identify and segment the coronary artery on CT images to generate a three-dimensional model. The CFD simulation method was used to obtain the FFR value of each coronary artery segment, and the consistency of the FFR obtained by the two methods was analyzed by the Bland-Altman method to verify the difference between the level set method in the coronary recognition accuracy and the manual method. Results The overall time required to obtain the FFR value of the two coronary artery identification methods was compared. Compared with the manual method, the model reconstruction time of the level set method is reduced by more than 10 times. After testing, the FFR numerical calculation results of the two coronary artery identification methods are in good agreement. Conclusions The level set method can realize the high-efficiency automatic identification of coronary artery in CT images, which has certain clinical application significance.

參考文獻:

1.Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention [J]. The New England Journal of Medicine,2009, 360(3): 213–224.
2.Pijls NHJ, Sels JWEM. Functional measurement of coronary stenosis[J]. Journal of the American College of Cardiology, 2012, 59(12): 1045–1057.
3.Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. The New England Journal of Medicine,1996, 334(26): 1703-1708.
4.Hlatky MA, Saxena A, Koo BK, et al. Projected costs and consequences of computed tomography-determined fractional flow reserve[J]. Clinical Cardiology, 2013, 36(12): 743–748.
5.Takeshi K, Hiroki S, Sachio K, et al. Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan [J]. Cardiovascular Intervention and Therapeutics, 2015, 30(1): 38–44.
6.Gaur S, Achenbach S, Leipsic J, et al. Rationale and design of the HeartFlowNXT ( HeartFlow analysis of coronary blood flow using CT angiography: next steps) study [J]. Journal of Cardiovascular Computed Tomography, 2013, 7(5): 279–288.
7.Kim KH, Doh JH, Koo BK, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve [J]. JACC: Cardiovascular Interventions, 2014, 7(1): 72–78.
8.De Geer J, Sandstedt M, Bj?rkholm A, et al. Software-based on-site estimation of fractional flow reserve using standard coronary CT angiography data[J]. Acta Radiologica, 2015, 95(2): 205–27.  2016,57(10): 1186-1192.
9.Tesche C, De Cecco CN, Caruso D, et al. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis [J]. Journal of Cardiovascular Computed Tomography, 2016, 10(3): 199–206.
10.Grunau GL, Min JK, Leipsic J. Modeling of fractional flow reserve based on coronary CT angiography [J]. Current Cardiology Reports,2013, 15(1): 336.
11.Cheruvu C, Naoum C, Blanke P, et al. Beyond stenosis with fractional flow reserve via computed tomography and advanced plaque analyses for the diagnosis of lesion-specific ischemia [J]. Canadian Journal of Cardiology, 2016, 32(11): 1315.e1-1315.e9.
12.Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve?: scientific basis[J]. Journal of the American College of Cardiology, 2013, 61(22): 2233–2241.
13.Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve (FFTCT) derived from coronary CT Angiography [J]. Journal of Cardiovascular Translational Research, 2013, 6(5): 708–714.
14.錢蕓, 張英杰. 水平集的圖像分割方法綜述[J]. 中國圖象圖形學(xué)報,2008, 13(1): 7–13.
Qian Y, Zhang YJ. Level set methods and its application on image segmentation[J]. Journal of Image and Graphics, 2008, 13(1): 7–13.
15.龔永義, 羅笑南, 黃輝, 等. 基于單水平集的多目標(biāo)輪廓提取[J]. 計算機學(xué)報, 2007, 30(1): 120–128.
Gong YY, Luo XN, Huang H, et al. [J]. Multi-objects extracted based on single level set[J]. Chinese Journal of Computers, 2007, 30(1): 120–128.
16.薩建, 劉桂芬. 定量測量結(jié)果的一致性評價及Bland-Altman法的應(yīng)用[J]. 中國衛(wèi)生統(tǒng)計, 2011, 28(4): 409–411, 413.
Sa J, Liu GF. Assessing the agreement of quantitative measurement data and the application of Bland-Altman method[J]. Chinese Journal of Health Statistics, 2011, 28(4): 409–411, 413.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]