1. Li YS, Chen J, Wang LL, et al. Experimental verification of the elastic formula for the aspirated length of a single cell considering the size and compressibility of cell during micropipette aspiration[J]. Annals of Biomedical Engineering, 2018, 46(7):1026–1037 . 2. Hassell JR, Birk DE. The molecular basis of corneal transparency[J]. Experimental Eye Research, 2010, 91(3):326-335. 3. Petroll WM, Miron-Mendoza M. Mechanical interactions and crosstalk between corneal keratocytes and the extracellular matrix[J]. Experimental Eye Research, 2015, 133:49-57. 4. 張海霞, 張迪, 秦曉, 等. 角膜生物力學(xué)特性研究進(jìn)展[J]. 科技導(dǎo)報(bào),2018, 36(13):23-29. Zhang HX, ZhanG D, Qin X, et al. Progress of research on corneal biomechanical properties[J]. Science & Technology Review, 2018, 36(13): 23-29. 5. Zhang HX, Khan MA, Zhang D, et al. Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of the original corneal thickness[J]. Journal of Ophthalmology, 2018: 2752945. 6.于夢(mèng)瑤,秦曉,張海霞,等,角膜膠原交聯(lián)后應(yīng)力重分布的有限元研究[J].北京生物醫(yī)學(xué)工程,2019, 38(6):598-604. Yu MY, Qin X, Zhang HX, et al. Finite element analysis of stress redistribution after corneal collagen cross-linking[J]. Beijing Biomedical Engineering, 2019, 38(6):598-604. 7. Kieβling TR, Herrera M, Nnetu KD, et al. Analysis of multiple physical parameters for mechanical phenotyping of living cells [J]. European Biophysics Journal, 2013, 42(5):383-394. 8. Iyer S, Woodworth CD, Gaikwad RM, et al. Towards nonspecific detection of malignant cervical cells with fluorescent silica beads[J]. Small, 2009, 5(20):2277-2284. 9. 王浩. 基于納米鑷子的細(xì)胞粘彈性測(cè)試方法研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2014. Wang H. Characterizing viscoelastic properties of the living cell with a probe nanotweezer [D]. Harbin: Harbin Institute of Technology, 2014. 10. Lim CT, Zhou EH, Li A, et al. Experimental techniques for single cell and single molecule biomechanics[J]. Materials Science and Engineering: C, 2006, 26(8):1278-1288 11. Bucchianico SD, Poma AM, Giardi MF, et al. Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes[J]. Journal of Nanobiotechnology, 2011, 9: 27. 12. Guilak F, Tedrow JR, Burgkart R. Viscoelastic properties of the cell nucleus[J]. Biochemical and Biophysical Research Communications, 2000, 269(3): 781-786. 13.Hochmuth RM. Micropipette aspiration of living cells[J]. Journal of Biomechanics, 2000, 33(1):15-22. 14.Dao M, Lim CT, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(11-12): 2259-2280. 15.宋建民. 基于AFM的細(xì)胞核力學(xué)特性原位測(cè)試的研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2015. Song JM. In situ quantification of living cell nucleus mechanical propertity with atomic force microscope[D]. Harbin: Harbin Institute of Technology, 2015. 16. Binnig G, Garcia N, Rohrer H. Conductivity sensitivity of inelastic scanning tunneling microscopy[J]. Physical Review B Condensed Matter, 1985, 32(2):1336-1338. 17. Puntheeranurak T, Wildling L, Gruber HJ, et al. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells[J]. Journal of Cell Science, 2006, 119(14):2960-2967. 18. Yu J, Wang Q, Shi X, et al. Single-molecule force spectroscopy study of interaction between transforming growth factor β1 and its receptor in living cells[J]. The Journal of Physical Chemistry B, 2007, 111(48):13619-13625. 19. Chaudhuri O, Parekh SH, Lam WA, et al. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells[J]. Nature Methods, 2009, 6(5):383-392. 20. Liang X, Shi X, Ostrovidov S, et al. Probing stem cell differentiation using atomic force microscopy[J]. Applied Surface Science, 2016, 366: 254-259. 21. Lekka G. Discrimination between normal and cancerous cells using AFM[J]. Bionanoscience, 2016, 6(1):65-80. 22. Reich A, Meurer M, Eckes B, et al. Surface morphology and mechanical properties of fibroblasts from scleroderma patients[J]. Journal of Cellular and Molecular Medicine, 2009, 13(8B):1644-1652. 23.于洋, 李林, 李?yuàn)檴? 等. 大鼠小梁細(xì)胞的體外培養(yǎng)及彈性模量的測(cè)量[J]. 北京生物醫(yī)學(xué)工程,2019,38(2):145-150. Yu Y, Li L, Li SS, et al. Culture in vitro and stiffness measurement of rat trabecular meshwork cells[J]. Beijing Biomedical Engineering, 2019, 38(2):145-150. 24.Wang C, Li L, Liu Z. Experimental research on the relationship between the stiffness and the expressions of fibronectin proteins and adaptor proteins of rat trabecular meshwork cells[J]. BMC Ophthalmology, 2017, 17: 268. 25. Liu H, Wen J, Xiao Y, et al. In situ mechanical characterization of the cell nucleus by atomic force microscopy[J].ACS Nano, 2014, 8(4): 3821-3828. 26. Eghiaian F, Rigato A, Scheuring S. Structural, mechanical, and dynamical variability of the actin cortex in living cells[J]. Biophysical Journal, 2015, 108: 1330-1340. 27.李杰, 李霞, 譚少健, 等. 牛角膜基質(zhì)細(xì)胞的兩步酶消化法高效分離及體外培養(yǎng)觀察[J]. 中華實(shí)驗(yàn)眼科雜志, 2011, 29(5): 398-401. Li J, Li X, Tan SJ, et al. Efficient isolation of bovine keratocytes utilizing two step enzymatic digestion[J].Chinese Journal of Experimental Ophthalmology, 2011, 29(5): 398-401. 28.張璐, 李妍, 胡竹林. 角膜基質(zhì)細(xì)胞的表型轉(zhuǎn)化及其預(yù)防瘢痕形成的研究[J]. 國(guó)際眼科縱覽, 2018, 42(3): 194-198. Zhang L,Li Y, Hu ZL. Henotypic transformation of corneal stromal cells and prevention of scar formation[J]. International Review of Ophthalmology, 2018, 42(3): 194-198. 29.劉玉喬, 王亞宇, 史亮. 生理狀態(tài)下人牙周膜成纖維細(xì)胞的原子力顯微鏡下的觀察[J]. 牙體牙髓牙周病學(xué)雜志, 2018, 28(9):511-514, 524. Liu YQ, Wang YY, Shi L. Observation of the morphology of living human periodontal ligament cells with atomic force microscope[J]. Chinese Journal of Conservative Dentistry, 2018, 28(9): 511-514, 524. 30.Radmacher M. Measuring the elastic properties of living cells by the atomic force microscope[J]. Methods in Cell Biology, 2002, 68: 67-90. 31.Dokukin ME, Sokolov I. On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth[J]. Macromolecules, 2012, 45(10): 4277-4288. 32.Guo Q, Xia Y, Sandig M, et al. Characterization of cell elasticity correlated with cell morphology by atomic force microscope[J]. Journal of Biomechanics, 2012, 45(2): 304-309 33.嚴(yán)拓, 孫蓉, 鄧華, 等. 角膜基質(zhì)細(xì)胞在p(HEMA-MMA)改性前后的粘附率、形貌與力學(xué)性能變化[J]. 分析測(cè)試學(xué)報(bào), 2010, 29(3): 232-236. Yan T, Sun R, Deng H, et al. Attachment, morphology and biomechanical changes of keratocytes cultured on unmodified and modified p(HEMA-MMA) hydrogel[J]. Journal of Instrumental Analysis, 2010, 29(3): 232-236. 34.Raghunathan VK, Thomasy SM, Strфm MP, et al. Tissue and cellular biomechanics during corneal wound injury and repair[J]. Acta Biomaterialia, 2017, 58: 291-301. 35.栗亞. 基于納米探針技術(shù)的NSCLC細(xì)胞表面形貌和力學(xué)特性研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2013. Li Y. Investigation of morphology and mechanical properties of NSCLC cells based on nano-indentation [D]. Harbin: Harbin Institute of Technology, 2013. 36.李淑萍. 基于AFM的細(xì)胞力學(xué)特性實(shí)驗(yàn)研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2014. Li SP. The research on mechanics properties of cells based on AFM[D]. Harbin: Harbin Institute of Technology, 2014. 37. Ursell TS, Nguyen J, Monds RD, et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization[J]. Proceeding of the National Academy of Sciences of the United States of America, 2014, 111(11): E1025–E1034.
|