[1] Wu JH, Wei W, Zhang L, et al. Risk assessment of hypertension in steel workers based on LVQ and Fisher-SVM deep excavation[J]. IEEE Access, 2019, 7: 23109-23119. [2] Ansah JP, Inn RLH, Ahmad S. An evaluation of the impact of aggressive hypertension, diabetes and smoking cessation management on CVD outcomes at the population level: a dynamic simulation analysis[J]. BMC Public Health, 2019, 19(1): 1105. [3] Fernández-Ruiz I. Systolic and diastolic hypertension independently predict CVD risk[J]. Nature Reviews Cardiology, 2019,16(10): 578-579. [4] Wang ZW, Chen Z, Zhang LF, et al. Status of hypertension in China results from the China Hypertension Survey, 2012-2015 [J]. Circulation, 2018, 137(22): 2344-2356. [5] Ghosh S, Banerjee A, Ray N, et al. Continuous blood pressure prediction from pulse transit time using ECG and PPG signals[C]//IEEE Healthcare Innovation Point-of-Care Technologies Conference. Cancun, Mexico: IEEE Press, 2016. [6] Munnoch R, Jiang P. A personal medical device for multi-sensor, remote vital signs collection in the elderly[C]// 2015 Science and Information Conference. London, UK: IEEE Press, 2015:1122-1131. [7] Sideris C, Kalantarian H, Nemati E, et al. Building Continuous Arterial Blood Pressure Prediction Models Using Recurrent Networks[C]//2016 IEEE International Conference on Smart Computing (SMARTCOMP). St Louis, MO, USA: IEEE, 2016: 1-5. [8] Simjanoska M, Kochev S, Tanevski J, et al. Multi-level information fusion for learning a blood pressure predictive model using sensor data [J]. Information Fusion, 2020, 58: 24-39. [9] Kwong EW-Y, Wu H, Pang GK-H. A prediction model of blood pressure for telemedicine [J]. Health Informatics Journal, 2016,24(3): 227-244. [10] 徐繼偉, 楊云. 集成學(xué)習(xí)方法:研究綜述 [J]. 云南大學(xué)學(xué)報(bào):自然科學(xué)版, 2018, 40(6): 36-46. Xu JW, Yang Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University(Natural Science), 2018, 40(6): 36-46. [11] 苗豐順, 李巖, 高岑, 等. 基于CatBoost算法的糖尿病預(yù)測(cè)方法[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用, 2019, 28(9): 215-218. Miao FS, Li Y, Gao C, et al. Diabetes prediction method based on CatBoost algorithm[J]. Computer Systems & Applications, 2019, 28(9): 215-218. [12] 王斌, 馮慧芬, 王芳, 等. 基于機(jī)器學(xué)習(xí)的Cat Boost模型在預(yù)測(cè)重癥手足口病中的應(yīng)用 [J]. 中國(guó)感染控制雜志, 2019, 18(1): 12-16. Wang B, Feng HF, Wang F, et al. Application of CatBoost model based on machine learning in predicting severe hand- foot-mouth disease[J]. Chinese Journal of Infection Control, 2019, 18(1): 12-16. [13] 《中國(guó)高血壓防治指南》修訂委員會(huì). 中國(guó)高血壓防治指南2018年修訂版 [J]. 心腦血管病防治, 2019, 19(1): 1-44. [14] 張冬冬, 劉雪嬌, 王炳源, 等. 我國(guó)成年人群年齡對(duì)體質(zhì)指數(shù)與高血壓發(fā)病風(fēng)險(xiǎn)的修飾效應(yīng)[J]. 中華流行病學(xué)雜志, 2018, 39(6): 765-769. Zhang DD, Liu XJ, Wang BY, et al. Age-related modification effect on the association between body mass index and the risk of hypertension: A Cohort Study on Chinese people living in the rural areas [J]. Chinese Journal of Epidemiology, 2018, 39(6): 765-769. [15] 李婧雯, 張曉卉, 尹新華. 肥胖相關(guān)高血壓的研究進(jìn)展[J]. 臨床與病理雜志, 2020, 40(4): 1006-1011. Li JW, Zhang XH, Yin XH. Progress in obesity-related hypertension[J]. Journal of Clinical and Pathological Research, 2020, 40(4): 1006-1011. [16] Zhang M, Zhao Y, Wang G, et al. Body mass index and waist circumference combined predicts obesity-related hypertension better than either alone in a rural Chinese population [J]. Scientific Reports, 2016, 6: 31935. [17] Huang XB, Chen F, Dai W, et al. Prevalence and risk factors associated with hypertension in the Chinese Qiang population[J]. Clinical and Experimental Hypertension, 2018, 40(5): 427-433. [18] 張艷艷, 何朝, 趙瑩穎, 等. 北京市順義區(qū)人群中心型肥胖與心血管疾病危險(xiǎn)因素分析[J]. 中國(guó)健康教育, 2016 , 32( 5) : 419-423. Zhang YY, He C, Zhao YY, et al. Relationship between central obesity and cardiovascular risk factors among residents of Shunyi District, Beijing[J]. Chinese Journal of Health Education, 2016 , 32( 5) : 419-423. [19] 蘇健,向全永,呂淑榮,等.江蘇省成人中心型肥胖與心血管疾病危險(xiǎn)因素及其聚集性的關(guān)系[J].中華心血管病雜志,2015,43( 6) : 548-553. Su J, Xiang QY, Lyu SR, et al. Relationship between central obesity and clustering of cardiovascular risk factors in adults of Jiangsu Province [J] . Chinese Journal of Cardiology, 2015,43( 6) : 548-553. [20] 沈振海, 陸昀, 祁華金,等. 理想心血管健康與腰圍、腰高比的相關(guān)性研究[J]. 中華健康管理學(xué)雜志, 2017, 11(1): 56-61. Shen ZH, Lu Y, Qi HJ, et al. Association between ideal cardiovascular health and waist circumference, waist-to-height ratio [J]. Chinese Journal of Health Management, 2017, 11(1): 56-61. [21] 汪宏莉, 韓延柏, 陳濤, 等. 老年人高血壓風(fēng)險(xiǎn)預(yù)測(cè)肥胖指標(biāo)篩選[J]. 中國(guó)公共衛(wèi)生, 2020, 36(1): 105-109. Wang HL, Han YB, Chen T, et al. Screening on obesity indexes for predicting hypertension risk in 60 – 69 years old community residents[J]. Chinese Journal of Public Health, 2020, 36(1): 105-109.
|