[1] 孟勛. 醫(yī)療信息化中的醫(yī)院信息系統(tǒng)建設(shè)研究[J]. 中國(guó)衛(wèi)生產(chǎn)業(yè), 2016,13 (35):66-67. Meng X. Research on construction of hospital information system in the hospital information[J]. China Health Industry, 2016, 13 (35):66-67. [2] 馬錫坤, 楊國(guó)斌, 于京杰. 國(guó)內(nèi)電子病歷發(fā)展與應(yīng)用現(xiàn)狀分析[J]. 計(jì)算機(jī)應(yīng)用與軟件, 2015, 32 (1) : 10-12, 38. Ma XK, Yang GB, Yu JJ. Analysing the development and application status of electronic medical records in China[J]. Computer Applications and Software, 2015, 32 (1) : 10-12, 38. [3] 聶莉莉, 李傳富, 許曉倩, 等. 人工智能在醫(yī)學(xué)診斷知識(shí)圖譜構(gòu)建中的應(yīng)用研究[J]. 醫(yī)學(xué)信息學(xué)雜志, 2018, 39(6): 7-12. Nie LL, Li CF, Xu XQ, et al. Study on application intelligence in the building of medical diagnosis knowledge graph[J]. Journal of Medical Intelligence, 2018, 39(6): 7-12. [4] Liu Y, Zhu LN, Liu Q, et al. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing[J]. Chinese Medical Journal, 2019, 132(14): 1673-1680. [5] 于楠. 中文電子病歷信息抽取關(guān)鍵技術(shù)研究[D]. 北京: 北京工業(yè)大學(xué), 2017. Yu N. Study on key technology of Chinese electronic medical records information extraction[D]. Beijing: Beijing University of Technology, 2017. [6] 周昆. 基于規(guī)則的命名實(shí)體識(shí)別研究[D]. 合肥: 合肥工業(yè)大學(xué), 2010. Zhou K. Research on named entity recognition based on rules[D]. Hefei: Hefei University of Technology, 2010. [7] Lei J, Tang B, Lu X, et al. A comprehensive study of named entity recognition in Chinese clinical text[J]. Journal of the American Medical Informatics Association, 2014, 21(5) : 808-814. [8] Chen Y, Lasko TA, Mei Q, et al. A study of active learning methods for named entity recognition in clinical text[J]. Journal of Biomedical Informatics, 2015, 58: 11-18. [9] 曲春燕, 關(guān)毅, 楊錦鋒, 等. 中文電子病歷命名實(shí)體標(biāo)注語料庫構(gòu)建[J]. 高技術(shù)通訊, 2015, 25(2): 143-150. Qu CY, Guan Y, Yang JF, et al. The construction of annotated corpora of named entities for Chinese electronic medical records[J]. High Technology Letters, 2015, 25(2): 143-150. [10] 李航.統(tǒng)計(jì)學(xué)習(xí)方法[M]. 北京:清華大學(xué)出版社,2012: 194-198. [11] Chen P, Liu Q, Wei L, et al. Automatically structuring on Chinese ultrasound report of cerebrovascular diseases via natural language processing[J]. IEEE Access, 2019,7: 89043-89050. [12] Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports[J]. Artificial Intelligence in Medicine, 2016, 66 : 29-39. [13] Liu X, Zhou Y, Wang Z. Recognition and extraction of named entities in online medical diagnosis data based on a deep neural network[J]. Journal of Visual Communication and Image Representation, 2019, 60: 1-15. [14] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging [EB/OL].[2019-11-30]. https://arxiv.org/pdf/1508.01991 [15] Souza F, Nogueira R, Lotufo R. Portuguese named entity recognition using BERT-CRF [EB/OL].[2019-11-30]. https://arxiv.org/pdf/1909.10649
|