51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于改進YOLO算法的肺部CT圖像中結節(jié)檢測研究

Study on nodule detection in lung CT images based on improved YOLO algorithm

作者: 王波  馮旭鵬  劉利軍  黃青松 
單位:昆明理工大學信息工程與自動化學院(昆明 650500) 云南省計算機技術應用重點實驗室(昆明650500) 昆明理工大學教育技術與網(wǎng)絡中心(昆明650500)
關鍵詞: YOLO算法;  CT圖像;  肺結節(jié)檢測;  多尺度預測;  目標識別 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·6(615-621)
摘要:

目的 隨著機器學習的發(fā)展,如何準確高效地識別肺部CT圖像中的肺結節(jié)具有重要的應用價值。方法 針對肺部結構復雜、肺部結節(jié)過小、肺結節(jié)病理特征各異等特點。提出一個以YOLO算法為基礎,結合Darknet-53網(wǎng)絡和Densenet網(wǎng)絡的思想,在多尺度間具有緊密連接的深度卷積神經(jīng)網(wǎng)絡。為保證圖像有效信息和提高目標定位的精確性以及檢測的召回率,首先對數(shù)據(jù)集圖像尺寸大小進行固定,其次通過使用K-means算法對數(shù)據(jù)集進行聚類分析。最后將使用二元交叉熵做類別預測。實驗使用美國癌癥研究所公開的肺部圖像數(shù)據(jù)集聯(lián)盟(lung image databse consortium, LIDC)提供的數(shù)據(jù)集,對肺結節(jié)檢測的準確率以及檢測效率進行了實驗對比。結果 改進的深度卷積神經(jīng)網(wǎng)絡對肺結節(jié)檢測的準確率及檢測效率均有提升。在肺部CT圖像中肺結節(jié)檢測的平均查全率達到95.69%,對微小結節(jié)的平均查全率達到88.66%,每秒識別幀數(shù)達到32 f/s,相比當前最快的Faster R-CNN檢測時間縮短了近80%。結論 通過對YOLO算法的改進可以提高肺結節(jié)檢測效率,為肺部CT圖像肺結節(jié)實時檢測提供了條件。

Objective With the development of machine learning, how to accurately and efficiently identify pulmonary nodules in CT images of the lung has important application value. Methods The pulmonary structure is complex, the pulmonary nodules are too small, and the pulmonary nodules have different pathological characteristics. Based on YOLO algorithm, a deep convolutional neural network with close connection between multiple scales is proposed, which combines the darknet-53 network and Densenet network. In order to ensure the effective information of the image and improve the accuracy of the target positioning and the recall rate of detection, the image size of the data set is fixed firstly, and then the clustering analysis of the data set is carried out by using k-means algorithm.Finally, binary cross entropy will be used to make category prediction. The study used data sets from the Lung Image database Consortium (LIDC), which is publicly available from the national cancer institute, to compare the accuracy and efficiency of Lung nodule detection. Results The improved deep convolutional neural network improves the accuracy and efficiency of lung nodule detection.In the lung CT images, the average recall rate of lung nodules detection was 95.69%, the average recall rate of tiny nodules was 88.66%, and the recognition frames per second reached 32f/s, which was nearly 80% shorter than the current fastest detection time of Faster r-cnn. Conclusions The improvement of YOLO algorithm can improve the detection efficiency of pulmonary nodules and provide conditions for real-time detection of pulmonary nodules in CT images.

參考文獻:

[1] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 2017, 67(1): 7-30.
[2] Nie SD, Chen ZX, Li LH. A CI feature-based pulmonary nodule segmentation using three-domain mean shift clustering[C]// International Conference on Wavelet Analysis and Pattern Recognition, 2007. Beijing, China: IEEE Xplore, 2007.
[3] Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(4): 271-289.
[4] Koning HJD, Meza R, Plevritis SK, et al. Benefits and harms of CT lung cancer screening strategies. a comparative modeling study for the U.S. Preventive Services Task Force[J]. Annals of Internal Medicine, 2014, 160(5): 311-320.
[5] Henschke CI, Naidich DP, Yankelevitz DF, et al. Early lung cancer action project: initial findings on repeat screenings[J]. Cancer, 2001, 92(1): 153-159.
[6] Puderbach M, Kauczor HU. Can lung MR replace lung CT?[J]. Pediatric Radiology, 2008, 38(Suppl 3): S439- S451.
[7] 劉淑琴. 肺癌影像醫(yī)學診斷進展[J]. 河北醫(yī)藥, 2008, 30(6): 860-861.
[8]Ko JP, Betke M. Chest CT: automated nodule detection and assessment of change over time- preliminary experience[J]. Radiology, 2001, 218(1): 267-273.
[9] Armato SG 3rd, Giger ML, Moran CJ, et al. Computerized detection of pulmonary nodules on CT scans[J]. Radiographics, 1999, 19(5): 1303-1311.
[10] Zhao B, Gamsu G, Ginsberg MS, et al. Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm[J]. Journal of Applied Clinical Medical Physics, 2003, 4(3): 248-260.
[11] Antonelli M, Lazzerini B, Marcelloni F. Segmentation and reconstruction of the lung volume in CT images[C]// 2005 ACM Symposium on Applied Computing. Santa Fe, New Mexico,USA: ACM, 2005: 255.
[12 ]El-Baz A, Gimel'Farb G, Falk R, et al. A new CAD system for early diagnosis of detected lung nodules[C]// 2007 IEEE International Conference on Image Processing. San Antonio, TX, USA: IEEE Press, 2007, 2(II): 461-464.
[13] Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans[J]. Medical Physics, 2003, 30(8): 2040-2051.
[14] Dou Q, Chen H, Yu L, et al. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection[J]. IEEE Transactions on Bio-medical Engineering, 2017, 64(7): 1558-1567.
[15] Teramoto A, Fujita H, Yamamuro O, et al. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique[J]. Medical Physics, 2016, 43(6): 2821-2827.
[16] Anirudh R, Thiagarajan JJ, Bremer T, et al. Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data[C]// SPIE Proceedings 9785, Medical Imaging 2016: Computer-Aided Diagnosis. Bellingham, WA, USA: SPIE, 2016: 978532.
[17] Ding J, Li A, Hu Z, et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks[M]// Medical Image Computing and Computer Assisted Intervention ? MICCAI 2017. Berlin: Springer Nature Switzerland AG, 2017:559-567.
[18] Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images[J]. IEEE Transactions on Medical Imaging, 2001, 20(6): 490-498.
[19] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[M]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE Computer Society, 2016.
[20] Parham J, Stewart C. Detecting plains and Grevy's Zebras in the realworld[C]// 2016 IEEE Winter Applications of Computer Vision Workshops. Lake Placid, NY, USA: IEEE Press, 2016: 1-9.
[21] Redmon J, Farhadi A. YOLOv3: an incremental improvement[J]. 2018.
[22] Huang G, Liu Z, van der Maaten L, et al. Densely Connected Convolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE Press, 2017.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]