51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于BP神經(jīng)網(wǎng)絡(luò)的手功能康復(fù)評估研究

Research on hand function rehabilitation evaluation based on BP neural network

作者: 谷雯雪  王殊軼  樊琳  林晨琳  呂燕飛 
單位:上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海200093) 威海市中醫(yī)院(山東威海 264200)
關(guān)鍵詞: 手功能康復(fù);  神經(jīng)網(wǎng)絡(luò);  評估;  握力;  肌電 
分類號:R318.04
出版年·卷·期(頁碼):2020·39·6(622-626)
摘要:

目的 針對手功能障礙康復(fù),本文提出了一種基于神經(jīng)網(wǎng)絡(luò)的主客觀結(jié)合的康復(fù)評估新方法。方法 選取27例偏癱患者進行抓握測試,記錄患者的握力、捏力、肌電數(shù)據(jù),采用Fugl-Meyer評定法(Fugl-Meyer assessment, FMA)得到患者的手功能康復(fù)評估分數(shù)。以握力和肌電等參數(shù)為輸入,以評估分數(shù)為輸出,建立基于BP(Back-Propagation)神經(jīng)網(wǎng)絡(luò)的手功能康復(fù)評估模型,利用獲取的24組樣本數(shù)據(jù)對神經(jīng)網(wǎng)絡(luò)進行訓(xùn)練,余下的3組樣本用于精度驗證,并通過聚類分析進一步提高預(yù)測精度。結(jié)果 訓(xùn)練后,模型的平均評估誤差率為18.13%,通過調(diào)整樣本類數(shù),平均評估誤差最大降至15.84%。結(jié)論 評估模型可以較為準(zhǔn)確地預(yù)測評估分數(shù),BP神經(jīng)網(wǎng)絡(luò)可以用于評估手功能障礙的康復(fù)程度。

Objective Aiming at the hand disfunction rehabilitation, a combination of the subjective and objective method of rehabilitation assessment based on neural network is proposed. Methods 27 patients with Hemiplegia were selected for the grip test. The gripping force, pinch force and electromyographic data of the patients were recorded. The Fugl-Meyer assessment (FMA) was used to obtain the hand function assessment scores. Using parameters such as grip strength and myoelectricity as input, and evaluation score as output, a hand function rehabilitation evaluation model based on BP (Back-Propagation) neural network was established, and the neural network was trained using the obtained 24 sets of sample data. The remaining 3 sets samples are used for accuracy verification, and cluster analysis further improves prediction accuracy. Results After training, the evaluation error rate of the model was 18.13% . By adjusting the number of sample classes, the maximum evaluation error was reduced to 15.84% . Conclusions The evaluation model can more accurately predict the evaluation score, and the BP neural network can be used to evaluate the degree of rehabilitation of hand dysfunction.

參考文獻:

[1] 沈設(shè)芬,李瑛,毛云英,等.老年腦卒中患者的康復(fù)需求及影響因素分析[J].護士進修雜志,2012,27( 9) : 854-855.
[2] Hu XL, Tong KY, Wei XJ, et al. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot[J]. Journal of Electromyography and Kinesiology, 2013, 23(5):1065-1074.
[3] 毛英.早期健康教育對腦卒中患者疾病認知程度的影響[J].中國當(dāng)代醫(yī)藥,2011,18(21):178-179.
[4] 賈杰. 腦卒中后手功能康復(fù)應(yīng)評價和治療并重[J]. 上海醫(yī)藥, 2014, 35(2):6-9.
Jia J. Rehabilitation of hand function after stroke requires attention to both assessment and therapy[J]. Shanghai Medical, 2014, 35(2):6-9.
[5] Malouin F, Pilchard L, Boneau C, et al. Evaluating motor recovery early after stroke: comparison of the Fugl-Meyer assessment and the motor assessment scale[J]. Archives of Physical Medicine & Rehabilitation, 1994, 75(11):1206-1212.
[6] 王新德,朱鏞連. 神經(jīng)病學(xué):神經(jīng)康復(fù)學(xué)[M].北京:人民軍醫(yī)出版社,2001.
[7] 秦茵,畢勝,王福根.腦卒中上肢功能常用評價方法及臨床應(yīng)用[J].中國康復(fù)醫(yī)學(xué)雜志,2004,19(3):232-235.
[8] 王博超, 張新峰. 基于人工智能和臨床診斷的上肢康復(fù)評估方法研究進展[J]. 北京生物醫(yī)學(xué)工程, 2018,37(1):103-108.
Wang BC, Zhang XF. Research progress of assessment methods based on artificial intelligence and clinical diagnosis in upper limb rehabilitation [J]. Beijing Biomedical Engineering, 2018,37(1):103-108.
[9] 王麗, 張秀峰, 馬巖, 等. 腦卒中患者上肢康復(fù)機器人及評價方法綜述[J]. 北京生物醫(yī)學(xué)工程,2015,34(5): 526-532.
Wang L, Zhang XF, Ma Y, et al. Summary of rehabilitation robot for upper limbs and evaluation methods for stroke patients [J]. Beijing Biomedical Engineering ,2015,34(5): 526-532.
[10] 楊延硯,周謀望,黃東峰.最大握力和捏力檢測用于腦卒中患者上肢功能評定的研究 [J].中國康復(fù)醫(yī)學(xué)雜志,2008,23(5):395-397.
Yang YY, Zhou MW, Huang DF. Standard maximal grip/pinch force test in stroke patients[J]. Chinese Journal of Rehabilitation Medicine, 2008, 23 (5): 395-397.
[11] Lienhard K, Cabasson A, Mest O. sEMG during whole-body vibration contains motion artifacts and reflex activity[J]. Journal of Spots Science medicine, 2015, 14 (1): 54-61.
[12] 袁曾任. 人工神經(jīng)元網(wǎng)絡(luò)及其應(yīng)用[M]. 北京:清華大學(xué)出版社,1999:5-14,66-77.
[13] 王桂麗. 應(yīng)用sEMG評估手功能支具在腦卒中腕手功能障礙的作用研究[D]. 福州:福建中醫(yī)藥大學(xué), 2017.
Wang GL. sEMG assessment of wrist and hand of dysfunction recovery by hand splint  treatment in post-stroke patients:a clinical study [D]. Fuzhou:Fujian University of Traditional Chinese Medicine,2017.
[14] Puh U. Age-related and sex-related differences in hand and pinch grip strength in adults[J]. International Journal of Rehabilitation Research, 2010, 33 (1): 4-11.
[15] 包蕾.表面肌電在康復(fù)握力訓(xùn)練中的應(yīng)用[D]. 2018. (在萬方和知網(wǎng)中沒查到此文獻)
Bao lei. Application of surface electromyography in rehabilitation grip training[D]. 2018.
[16] Kolich M. Predicting automobile seat comfort using a neural network[J]. International Journal of Industrial Ergonomics, 2004, 33(4):285-293.
[17] 史峰,王小川,郁磊,等. MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析[M]. 北京:北京航空航天大學(xué)出版社, 2010.
[18] 馬佳, 柯藝杰, 蘇強,等. 汽車座椅舒適度人工智能評價方法研究[J]. 機械科學(xué)與技術(shù), 2011,30(3):419-422.
Ma J, Ke YJ, Su Q, et al. An automobile seat comfort evaluating method based on artificial intelligence [J]. Mechanical Science and Technology for Aerospace Engineering, 2011,30(3):419-422.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]