[1] 陳澤龍,張少涵,張振昌. 基于Android平臺(tái)的精神疲勞檢測(cè)系統(tǒng)的設(shè)計(jì)與應(yīng)用[J]. 醫(yī)療衛(wèi)生裝備,2019,40(12):28-32. Chen ZL, Zhang SH, Zhang ZC. Design and application of mental fatigue detection system based on android platform[J]. Chinese Medical Equipment Journal, 2019, 40(12):28-32. [2] Lal SK, Craig A, Boord P ,et al. Development of an algorithm for an eeg-based driver fatigue countermeature[J]. Journal of Safety Research, 2003,34(3):321-8. [3] 王萍萍,梁曉峰,劉燕,等.基于Android平臺(tái)的腦電日常監(jiān)護(hù)系統(tǒng)設(shè)計(jì)及實(shí)現(xiàn)[J].計(jì)算機(jī)與數(shù)字工程, 2018,46(7):1452-1457. Wang PP, Liang XF, Liu Y, et al. Design and implementation of eeg daily monitoring system based on android platform[J]. Computer & Digital Engineering, 2018, 46(7):1452-1457. [4] 范曉麗,趙朝義,羅虹. 基于2-back任務(wù)下ERP特征的腦力疲勞客觀評(píng)價(jià)研究[J]. 生物醫(yī)學(xué)工程雜志,2018,35(6):837-844. Fan XL, Zhao CY, Luo Hong. An event-related potential objective evaluation study of mental fatigue based on 2-back task[J]. Journal of Biomedical Engineering, 2018, 35(6):837-844. [5]Chalder T, Berelowitz G, Pawl ikowska T, et al. Development of a fatigue scale[J]. Journal of Psychosomatic Research, 1993,37(2): 147-153. [6] Ma Yongma, Tian Fuze, Zhao Qinglin, et al. Design and application of mental fatigue detection system using non-contace ECG and BCG measurement[C]. 2018 IEEE International Conference on Bioinformatics and Biomedicine, 2018. [7] 喬延云. 基于腦疲勞的聽(tīng)覺(jué)誘發(fā)腦電特征分析[D]. 天津:河北工業(yè)大學(xué),2015. Qiao YY. Analyses of auditory evoked potentials features based on mental fatigue[D]. Tianjing:Hebei University of Technology, 2015. [8] 李楊.基于MindWave的腦電信號(hào)分析方法研究[D].北京:北京工業(yè)大學(xué),2014. Li Y. EEG analysis method and application based on mindwave[D]. Beijing:Beijing University of Technology, 2014. [9] 馬進(jìn).健康青年腦力疲勞生理指標(biāo)和認(rèn)知功能的實(shí)驗(yàn)研究[D].西安:第四軍醫(yī)大學(xué),2008. Ma J. Experiment study assessment criteria for judging healthy youths’ physiological index and cognitive ability[D]. Xian Fourth Military Medical University, Xi’an, 2008. [10] 劉建平,張崇,鄭崇勛,等.基于多導(dǎo)腦電復(fù)雜性測(cè)度的腦疲勞分析[J].西安交通大學(xué)學(xué)報(bào),2008,42(12):1555-1559. Liu JP, Zhang C, Zheng CX, et al. Mental fatigue analysis based on complexity measure of multichannel electroencephalogram[J]. Journal of Xi’an Jiaotong University, 2008, 42(12):1555-1559. [11] 張崇,鄭崇勛,歐陽(yáng)軼,等.基于腦電功率譜特征的腦力疲勞分析[J].航天醫(yī)學(xué)與醫(yī)學(xué)工程,2008,21(1):35-39. Zhang C, Zheng CX, Ou YY, et al. Analysis of mental fatigue basing on power spectrum feature of eeg[J]. Space Medicine & Medical Engineering, 2008,21(1):35-39. [12]宋國(guó)萍,張侃. 駕駛疲勞對(duì)聽(tīng)覺(jué)注意影響的ERP研究[J]. 心理科學(xué), 2009,32(3):517-520. Song GP, Zhang K. An ERP study of effects of driving fatigue on auditory attention [J]. Psychological Science, 2009, 32(3):517-520. [13] 高建. 基于Android的穩(wěn)態(tài)視覺(jué)誘發(fā)電位視覺(jué)刺激器的研究[D]. 天津:天津職業(yè)技術(shù)師范大學(xué),2016. Gao J. Study of steady-state visual evoked potential visual stimulator based on android[D]. Tianjin:Tianjin University of Technology and Education, 2016. [14] 郝建會(huì),杜巨豹,霍速. 利用事件相關(guān)電位探索三種聽(tīng)覺(jué)Oddball范式腦加工機(jī)制的研究[J].中國(guó)康復(fù)醫(yī)學(xué)雜志,2017,32(6):613-617. Hao JH, Du JB, Huo S. Using event-related potentials to explore processing mechanism of three auditory oddball paradigms in the brain[J]. Chinese Journal of Rehabilitation Medicine, 2017,32(6):613-617. [15] 董倩妍.基于空間聽(tīng)覺(jué)P300的腦機(jī)接口技術(shù)研究[D].廣州:廣州大學(xué),2019,5. Dong QY. Research on brain-computer interface technology based on spatial auditory p300[D]. Guangzhou:Guangzhou University, 2019.5. [16]王麗,蘭陟,楊榮,等. 基于核函數(shù)極限學(xué)習(xí)機(jī)和小波包變換的EEG 分類(lèi)方法[J]. 北京生物醫(yī)學(xué)工程, 2018,37(5):481-487. Wang L, Lan Z, Yang R, et al. EEG classification algorithm based on kernel extreme learning machine and wavelet packet transform[J]. Beijing Biomedical Engineering, 2018,37(5):481-487. [17] 席旭剛,武昊,羅志增.基于 EMD 自相關(guān)的表面肌電信號(hào)消噪方法[J].儀器儀表學(xué) 報(bào),2014,35(11):2494-2500. Xi XP, Wu H, Luo ZZ. De-noising method of the sEMG based on emd autocorrelation[J]. Chinese Journal of Scientific Instrument, 2014, 35(11):2494-2500. [18] 楊榮,王麗,張秀峰,等. 基于聽(tīng)覺(jué)腦電的腦卒中康復(fù)實(shí)驗(yàn)?zāi)J窖芯浚本┥镝t(yī)學(xué)工程,2015,34(6):607 -611. Yang R, Wang L, Zhang XF, et al. Experimental mode of stroke rehabilitation based on auditory eeg[J]. Beijing Biomedical Engineering, 2015,34(6):607- 611. [19] 李含磊. 單次誘發(fā)腦電特征提取工具包及算法優(yōu)化[D]. 北京:北京協(xié)和醫(yī)學(xué)院,2017. Li HL. Single-trial evoked potential extraction toolbox and algorithm optimization[D].Beijing:Peking Union Medical College, 2017,5. [20] 徐寶國(guó),彭思,宋愛(ài)國(guó).基于運(yùn)動(dòng)想象腦電的上肢康復(fù)機(jī)器人[J].機(jī)器人,2011,33(3):307-313. Xu BG, Peng S, Song AG. Upper-limb rehabilitation robot based on motor imagery eeg[J],Robot,2011,33(3): 307-313. [21] 李寧寧. 基于Android的應(yīng)用程序開(kāi)發(fā)教程. 北京:電子工業(yè)出版社,2016:1-6.
|