51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于TGAM模塊的便攜式腦力疲勞檢測(cè)系統(tǒng)

Design of portablemental fatigue detecting system based on TGAM module

作者: 楊榮  李增勇  魏鵬緒  王麗  張寧  宋亮 
單位:國(guó)家康復(fù)輔具研究中心,北京市老年功能障礙康復(fù)輔助技術(shù)重點(diǎn)實(shí)驗(yàn)室(北京 100176) 國(guó)家康復(fù)輔具研究中心附屬康復(fù)醫(yī)院(北京 100176)
關(guān)鍵詞: TGAM腦電模塊;  Java平臺(tái);  聽(tīng)覺(jué)誘發(fā)電位;  Android;  服務(wù)器;  腦力疲勞檢測(cè) 
分類(lèi)號(hào):R318.04
出版年·卷·期(頁(yè)碼):2021·40·1(31-37)
摘要:

目的 現(xiàn)代社會(huì)中腦力勞動(dòng)者腦力疲勞容易引發(fā)事故和心理疾病,設(shè)計(jì)一種便攜式腦力疲勞檢測(cè)系統(tǒng)及時(shí)檢測(cè)腦力疲勞并提醒勞動(dòng)者休息的具有重要的現(xiàn)實(shí)意義。方法在Android系統(tǒng)平臺(tái)下,進(jìn)行腦力疲勞檢測(cè)系統(tǒng)的應(yīng)用設(shè)計(jì),主要包括分別腦電采集端、Android移動(dòng)端、服務(wù)器端三個(gè)模塊。系統(tǒng)首先通過(guò)腦電采集端進(jìn)行聽(tīng)覺(jué)誘發(fā)EEG信號(hào)的采集,再將EEG信號(hào)通過(guò)Android移動(dòng)端傳輸至服務(wù)器端,利用多種解析算法提取P300中P3b成分的幅值進(jìn)行分析,最后將分析結(jié)果返回Android移動(dòng)端。結(jié)果 腦電采集端可實(shí)現(xiàn)對(duì)EEG進(jìn)行采集、放大、濾波及傳輸,并通過(guò)藍(lán)牙模塊傳輸至服務(wù)器端進(jìn)行解析和疲勞評(píng)判。通過(guò)Android端可實(shí)現(xiàn)查看原始腦波、P300波形、疲勞評(píng)判結(jié)果以及歷史數(shù)據(jù),也可登陸服務(wù)器端查看原始腦電數(shù)據(jù)和數(shù)據(jù)處理結(jié)果。  結(jié)論 所構(gòu)建的系統(tǒng)可以實(shí)時(shí)采集用戶的腦電數(shù)據(jù)并進(jìn)行P300波形分析,方便快捷的得到用戶的腦力疲勞狀態(tài)。未來(lái)將進(jìn)一步優(yōu)化算法模型,減輕個(gè)體差異性對(duì)準(zhǔn)確度的影響。

Objective Mental fatigue of brain workers is likely to trigger accidents and mental illness in modern society. It is of great practical significance to detect mental fatigue and remind workers to rest in a timely and convenient manner. Methods A mental fatigue detection system is developed on Android platform, which mainly includes three modules: the EEG acquisition terminal, the Android mobile terminal, and the server. The auditory evoked EEG is collected through the EEG acquisition terminal. Then through the Android mobile terminal, EEG signal is transmitted to the server. The amplitude of P3b in the P300 is extracted and analyzed based on various analytic algorithms. Finally, the analysis result is returned to the Android mobile terminal. Results Through the EEG acquisition terminal, EEG is collected, amplified, filtered and transmitted to the server by Bluetooth module for analysis and fatigue evaluation. The raw brain wave, P300 wave, fatigue evaluation results and historical data can be viewed through the Android mobile terminal. The raw EEG and data processing results can also be viewed on the server. ConclusionsThis system can be used to realize the EEG data collection in real time and P300 wave analysis. The mental fatigue state of the user can be get conveniently and quickly. The optimization for the algorithm model will be carried out in further studies to reduce the impact of individual differences in accuracy.

參考文獻(xiàn):

[1] 陳澤龍,張少涵,張振昌. 基于Android平臺(tái)的精神疲勞檢測(cè)系統(tǒng)的設(shè)計(jì)與應(yīng)用[J]. 醫(yī)療衛(wèi)生裝備,2019,40(12):28-32.

Chen ZL, Zhang SH, Zhang ZC. Design and application of mental fatigue detection system based on android platform[J]. Chinese Medical Equipment Journal, 2019, 40(12):28-32.

[2] Lal SK, Craig A, Boord P ,et al. Development of an algorithm for an eeg-based driver fatigue countermeature[J]. Journal of Safety Research, 2003,34(3):321-8.

[3] 王萍萍,梁曉峰,劉燕,等.基于Android平臺(tái)的腦電日常監(jiān)護(hù)系統(tǒng)設(shè)計(jì)及實(shí)現(xiàn)[J].計(jì)算機(jī)與數(shù)字工程, 2018,46(7):1452-1457.

Wang PP, Liang XF, Liu Y, et al. Design and implementation of eeg daily monitoring system based on android platform[J]. Computer & Digital Engineering, 2018, 46(7):1452-1457.

[4] 范曉麗,趙朝義,羅虹. 基于2-back任務(wù)下ERP特征的腦力疲勞客觀評(píng)價(jià)研究[J]. 生物醫(yī)學(xué)工程雜志,2018,35(6):837-844.

Fan XL, Zhao CY, Luo Hong. An event-related potential objective evaluation study of mental fatigue based on 2-back task[J]. Journal of Biomedical Engineering, 2018, 35(6):837-844.

[5]Chalder T, Berelowitz G, Pawl ikowska T, et al. Development of a fatigue scale[J].

Journal of Psychosomatic Research, 1993,37(2): 147-153.

[6] Ma Yongma, Tian Fuze, Zhao Qinglin, et al. Design and application of mental fatigue detection system using non-contace ECG and BCG measurement[C]. 2018 IEEE International Conference on Bioinformatics and Biomedicine, 2018.

[7] 喬延云. 基于腦疲勞的聽(tīng)覺(jué)誘發(fā)腦電特征分析[D]. 天津:河北工業(yè)大學(xué),2015.

Qiao YY. Analyses of auditory evoked potentials features based on mental fatigue[D]. Tianjing:Hebei University of Technology, 2015.

[8] 李楊.基于MindWave的腦電信號(hào)分析方法研究[D].北京:北京工業(yè)大學(xué),2014.

Li Y. EEG analysis method and application based on mindwave[D]. Beijing:Beijing University of Technology, 2014.

[9] 馬進(jìn).健康青年腦力疲勞生理指標(biāo)和認(rèn)知功能的實(shí)驗(yàn)研究[D].西安:第四軍醫(yī)大學(xué),2008.

Ma J. Experiment study assessment criteria for judging healthy youths’ physiological index and cognitive ability[D]. Xian Fourth Military Medical University, Xi’an, 2008.

[10] 劉建平,張崇,鄭崇勛,等.基于多導(dǎo)腦電復(fù)雜性測(cè)度的腦疲勞分析[J].西安交通大學(xué)學(xué)報(bào),2008,42(12):1555-1559.

Liu JP, Zhang C, Zheng CX, et al. Mental fatigue analysis based on complexity measure of multichannel electroencephalogram[J]. Journal of Xi’an Jiaotong University, 2008, 42(12):1555-1559.

[11] 張崇,鄭崇勛,歐陽(yáng)軼,等.基于腦電功率譜特征的腦力疲勞分析[J].航天醫(yī)學(xué)與醫(yī)學(xué)工程,2008,21(1):35-39.

Zhang C, Zheng CX, Ou YY, et al. Analysis of mental fatigue basing on power spectrum feature of eeg[J]. Space Medicine & Medical Engineering, 2008,21(1):35-39.

[12]宋國(guó)萍,張侃. 駕駛疲勞對(duì)聽(tīng)覺(jué)注意影響的ERP研究[J]. 心理科學(xué), 2009,32(3):517-520.

Song GP, Zhang K. An ERP study of effects of driving fatigue on auditory attention [J]. Psychological Science,   2009, 32(3):517-520.

[13] 高建. 基于Android的穩(wěn)態(tài)視覺(jué)誘發(fā)電位視覺(jué)刺激器的研究[D]. 天津:天津職業(yè)技術(shù)師范大學(xué),2016.

Gao J. Study of steady-state visual evoked potential visual stimulator based on android[D]. Tianjin:Tianjin University of Technology and Education, 2016.

[14] 郝建會(huì),杜巨豹,霍速. 利用事件相關(guān)電位探索三種聽(tīng)覺(jué)Oddball范式腦加工機(jī)制的研究[J].中國(guó)康復(fù)醫(yī)學(xué)雜志,2017,32(6):613-617.

Hao JH, Du JB, Huo S. Using event-related potentials to explore processing mechanism of three auditory oddball paradigms in the brain[J]. Chinese Journal of Rehabilitation

Medicine, 2017,32(6):613-617.

[15] 董倩妍.基于空間聽(tīng)覺(jué)P300的腦機(jī)接口技術(shù)研究[D].廣州:廣州大學(xué),2019,5.

Dong QY. Research on brain-computer interface technology based on spatial auditory p300[D]. Guangzhou:Guangzhou University, 2019.5.

[16]王麗,蘭陟,楊榮,等. 基于核函數(shù)極限學(xué)習(xí)機(jī)和小波包變換的EEG 分類(lèi)方法[J]. 北京生物醫(yī)學(xué)工程, 2018,37(5):481-487.

Wang L, Lan Z, Yang R, et al. EEG classification algorithm based on kernel extreme learning machine and wavelet packet transform[J]. Beijing Biomedical Engineering, 2018,37(5):481-487.

[17]  席旭剛,武昊,羅志增.基于 EMD 自相關(guān)的表面肌電信號(hào)消噪方法[J].儀器儀表學(xué)

報(bào),2014,35(11):2494-2500.

Xi XP, Wu H, Luo ZZ. De-noising method of the sEMG based on emd autocorrelation[J]. Chinese Journal of Scientific Instrument, 2014, 35(11):2494-2500.

[18] 楊榮,王麗,張秀峰,等. 基于聽(tīng)覺(jué)腦電的腦卒中康復(fù)實(shí)驗(yàn)?zāi)J窖芯浚本┥镝t(yī)學(xué)工程,2015,34(6):607 -611.

Yang R, Wang L, Zhang XF, et al. Experimental mode of stroke rehabilitation based on auditory eeg[J]. Beijing Biomedical Engineering, 2015,34(6):607- 611.

[19] 李含磊. 單次誘發(fā)腦電特征提取工具包及算法優(yōu)化[D]. 北京:北京協(xié)和醫(yī)學(xué)院,2017.

Li HL. Single-trial evoked potential extraction toolbox and algorithm optimization[D].Beijing:Peking Union Medical College, 2017,5.

[20] 徐寶國(guó),彭思,宋愛(ài)國(guó).基于運(yùn)動(dòng)想象腦電的上肢康復(fù)機(jī)器人[J].機(jī)器人,2011,33(3):307-313.

Xu BG, Peng S, Song AG. Upper-limb rehabilitation robot based on motor imagery eeg[J],Robot,2011,33(3): 307-313.

[21] 李寧寧. 基于Android的應(yīng)用程序開(kāi)發(fā)教程. 北京:電子工業(yè)出版社,2016:1-6.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]