[1] Fedotov AA. Selection of parameters for filtering distal arterial pulse signal using multi-resolution wavelet transforms[J]. Biomedical Engineering, 2013, 47(3):146-149. [2] Hoseini MR, Zuo MJ, Wang X. Denoising ultrasonic pulse-echo signal using two-dimensional analytic wavelet thresholding[J]. Measurement, 2012,45(3):255-267. [3] Wang YF, Guo GL, Li ZQ. Study on pulse-signal detection methods using wavelet transform and Hilbert Huang transform[J]. Advanced Materials Research, 2013,860-863:2918-2923. [4] Andreev DA, Bozhokin SV, Venevtsev ID,et al. Gabor transform and continuous wavelet transform for model pulsed signals[J]. Technical Physics, 2014, 59(10):1428-1433. [5] Amin HU, Malik AS, Ahmad RF, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1):1-11. [6] Bhattacharyya A, Pachori R, Acharya U. Tunable-Q Wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis[J]. Entropy, 2017,19(3):1-14. [7] Hayes MJ, Smith PR. A new method for pulse oximetry possessing inherent insensitivity to artifact[J]. IEEE Transactions on Biomedical Engineering[J]. 2001, 48(4):452-461. [8] Lee S, Ibey BL, Xu W, et al. Processing of pulse oximeter data using discrete wavelet analysis[J]. IEEE Transactions on Biomedical Engineering[J]. 2005, 52(7):1350-1352. [9] Gibbs P, Ashada HH. Reducing motion artifact in wearable bio-sensors using mems accelerometers for active noise cancellation[C] // Proceedings of the 2005, American Control Conference, Portland :IEEE,2005:1581-1586. [10] Yan YS,Zhang YT. An efficient motion-resistant method for wearable pulse oximeter[J]. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(3): 399-405. [11] Lee SH, Lim JS, Kim JK, et al. Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance.[J]. Computer Methods & Programs in Biomedicine, 2014, 116(1):10-25. [12] Boggess A ,Narcowich FJ. 小波與傅里葉分析基礎(chǔ)[M]. 芮國(guó)勝,康健譯. 北京:電子工業(yè)出版社,2004. [13] 蔣曲博, 甘永進(jìn), 張翠娜. 反射式血氧飽和度檢測(cè)系統(tǒng)研制[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2017, 34(1):58-64. Jiang QB, Gan YJ, Zhang CN. Development of reflective blood oxygen saturation detection system [J]. Chinese Journal of Medical Physics,2017, 34(1):58-64. [14] 羅志昌, 張松, 楊益民. 脈搏波的工程分析與臨床應(yīng)用[M]. 北京: 科學(xué)出版社, 2006. [15] 張愛華, 王平, 丑永新. 基于動(dòng)態(tài)差分閾值的脈搏信號(hào)峰值檢測(cè)算法[J]. 吉林大學(xué)學(xué)報(bào): 工學(xué)版, 2014, 44(3): 847-853. Zhang AH, Wang P, Chou YX. Peak detection of pulse signal based on dynamic different threshold[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3): 847-853. [16] Chen HK, He XY, Tang HM, et al. Study on wavelet denoising of pulse impactforce of non-viscosity debris flow[J]. Applied Mechanics and Materials, 2012, 249-250:1040-1046. [17] 金燕, 王丹濃, 劉國(guó)越. 基于迭代算法的暫態(tài)電能質(zhì)量擾動(dòng)信號(hào)消噪[J]. 浙江工業(yè)大學(xué)學(xué)報(bào), 2011, 39(1):92-96. Jin Y, Wang DN, Liu GY. Transient power quality disturbance signal denoising based on a recursive algorithm[J]. Journal of Zhejiang University of Technology, 2011,39(1):92-96. [18] Dey D . Comparison of FFT, DCT, DWT, WHT compression techniques on electrocardiogram and photoplethysmography signals[C]// International Conference on Computing. Communication and Sensor Network. Rourkela, India :CCSN, 2012:6-11.
[19] Sidhik S. Comparative study of Birge-Ma ssart strategy and unimodal thresholding for image compression using wavelet transform[J]. Optik, 2015, 126(24):5952-5955.
|