51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于小波閾值法的脈搏波去噪算法研究

Pulse Wave Denoising Algorithm Based On the Wavelet Threshold method

作者: 吳星  林林  陳海軍  徐之標(biāo) 
單位:廣東醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院 (廣東東莞 523808)
關(guān)鍵詞: 脈搏波;  運(yùn)動(dòng)偽差;  小波閾值法;  基線漂移;  信噪比;  均方差;  平滑度 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2021·40·1(38-45)
摘要:

目的 消除可穿戴式脈搏波監(jiān)測(cè)設(shè)備在連續(xù)測(cè)量中由于運(yùn)動(dòng)造成的運(yùn)動(dòng)偽差,保證設(shè)備準(zhǔn)確性和穩(wěn)定性。方法 通過選取合適的小波基、小波最大分解層數(shù)、閾值函數(shù)和閾值方法,對(duì)脈搏波信號(hào)進(jìn)行小波閾值處理,提出了一種基于小波閾值法去除脈搏波噪聲的算法。并針對(duì)在脈搏波信號(hào)采集過程中出現(xiàn)的基線漂移、工頻干擾和運(yùn)動(dòng)偽差,與加窗傅里葉變換去噪后的結(jié)果進(jìn)行對(duì)比。結(jié)果 在信噪比、均方差和平滑度等關(guān)鍵指標(biāo)上,小波閾值法的效果更優(yōu)。利用db9小波基對(duì)脈搏波信號(hào)進(jìn)行6層小波分解,設(shè)置啟發(fā)式閾值所得到的處理效果最好。結(jié)論 該算法能夠有效抑制工頻干擾和運(yùn)動(dòng)干擾,使信噪比提高22dB,均方差接近于0,且平滑度降為原來的11%,實(shí)現(xiàn)脈搏波信號(hào)采集中干擾的有效去除。

Objective To eliminate the error caused by motion in the continuous measurement of the wearable pulse wave monitoring device so that the accuracy and stability of the device can be ensured. Methods By choosing the suitable wavelet base, the biggest wavelet decomposition layer, the threshold function and threshold method, we present an algorithm based on the wavelet threshold method to remove pulse wave noise and compare the results of windowed Fourier transform denoising with the baseline drift interference and motion error in pulse wave signal acquisition. Results The wavelet threshold method is more effective in key indicators such as the signal-to-noise ratio, mean square deviation and smoothness. In addition, after using DB9 wavelet base to decompose pulse wave signal with a 6-level wavelet and setting the heuristic threshold, we find that the processing effect is the best. Conclusions This algorithm can effectively suppress power frequency interference and motion interference so that the signal-to-noise ratio will be increased by 22dB, the mean square deviation will get close to 0, and the smoothness will increase to the original 11%, which will realize the effective removal of interference in the pulse wave signal acquisition.

參考文獻(xiàn):

[1] Fedotov AA. Selection of parameters for filtering distal arterial pulse signal using multi-resolution wavelet transforms[J]. Biomedical Engineering, 2013, 47(3):146-149.

[2] Hoseini MR, Zuo MJ, Wang X. Denoising ultrasonic pulse-echo signal using two-dimensional analytic wavelet thresholding[J]. Measurement, 2012,45(3):255-267.

[3] Wang YF, Guo GL, Li ZQ. Study on pulse-signal detection methods using wavelet transform and Hilbert Huang transform[J]. Advanced Materials Research, 2013,860-863:2918-2923.

[4] Andreev DA, Bozhokin SV, Venevtsev ID,et al. Gabor transform and continuous wavelet transform for model pulsed signals[J]. Technical Physics, 2014, 59(10):1428-1433.

[5] Amin HU, Malik AS, Ahmad RF, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1):1-11.

[6] Bhattacharyya A, Pachori R, Acharya U. Tunable-Q Wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis[J]. Entropy, 2017,19(3):1-14.

[7] Hayes MJ, Smith PR. A new method for pulse oximetry possessing inherent insensitivity to artifact[J]. IEEE Transactions on Biomedical Engineering[J]. 2001, 48(4):452-461.

[8] Lee S, Ibey BL, Xu W, et al. Processing of pulse oximeter data using

discrete wavelet analysis[J]. IEEE Transactions on Biomedical Engineering[J]. 2005, 52(7):1350-1352.

[9] Gibbs P, Ashada HH. Reducing motion artifact in wearable bio-sensors using mems accelerometers for active noise cancellation[C] // Proceedings of the 2005, American Control Conference, Portland :IEEE,2005:1581-1586.

[10] Yan YS,Zhang YT. An efficient motion-resistant method for wearable pulse

oximeter[J]. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(3):

399-405.

[11] Lee SH, Lim JS, Kim JK, et al. Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance.[J]. Computer Methods & Programs in Biomedicine, 2014, 116(1):10-25.

[12] Boggess A ,Narcowich FJ. 小波與傅里葉分析基礎(chǔ)[M]. 芮國(guó)勝,康健譯. 北京:電子工業(yè)出版社,2004.

[13] 蔣曲博, 甘永進(jìn), 張翠娜. 反射式血氧飽和度檢測(cè)系統(tǒng)研制[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2017, 34(1):58-64.

Jiang QB, Gan YJ, Zhang CN. Development of reflective blood oxygen saturation detection system [J]. Chinese Journal of Medical Physics,2017, 34(1):58-64.

[14] 羅志昌, 張松, 楊益民. 脈搏波的工程分析與臨床應(yīng)用[M]. 北京: 科學(xué)出版社, 2006.

[15] 張愛華, 王平, 丑永新. 基于動(dòng)態(tài)差分閾值的脈搏信號(hào)峰值檢測(cè)算法[J]. 吉林大學(xué)學(xué)報(bào): 工學(xué)版, 2014, 44(3): 847-853.

Zhang AH, Wang P, Chou YX. Peak detection of pulse signal based on dynamic different threshold[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3): 847-853.

[16] Chen HK, He XY, Tang HM, et al. Study on wavelet denoising of pulse impactforce of non-viscosity debris flow[J]. Applied Mechanics and Materials, 2012, 249-250:1040-1046.

[17] 金燕, 王丹濃, 劉國(guó)越. 基于迭代算法的暫態(tài)電能質(zhì)量擾動(dòng)信號(hào)消噪[J]. 浙江工業(yè)大學(xué)學(xué)報(bào), 2011, 39(1):92-96.

Jin Y, Wang DN, Liu GY. Transient power quality disturbance signal denoising based on a recursive algorithm[J]. Journal of Zhejiang University of Technology, 2011,39(1):92-96.

[18] Dey D . Comparison of FFT, DCT, DWT, WHT compression techniques on electrocardiogram and photoplethysmography signals[C]// International Conference on Computing. Communication and Sensor Network. Rourkela, India :CCSN, 2012:6-11.


[19] Sidhik S. Comparative study of Birge-Ma ssart strategy and unimodal thresholding for image compression using wavelet transform[J]. Optik, 2015, 126(24):5952-5955.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]