[1] 魯翔,許年珍,袁永根,等.大型醫(yī)院醫(yī)療流程和資源配置的仿真決策系統(tǒng)研究[J]. 中國(guó)醫(yī)院管理,2005,25(01):10-13. Lu X,Xu NZ,Yuan YG,et al. Study on medical processes and resource disposition in township and municipal hospitals: a simulation of polcy-making[J]. Chinese Hospital Management,2005,25(01):10-13 [2] 賀國(guó)光. ITS 系統(tǒng)工程導(dǎo)論[M]. 北京: 中國(guó)鐵道出版社,2004 [3] Tandberg D, Qualls C. Time series forecasts of emergency department patient volume, length of stay, and acuity[J]. Annals of Emergency Medicine, 1994, 23(2):299-306. [4] Asplin BR, Flottemesch TJ, Gordon BD. Developing models for patient flow and daily surge capacity research[J]. Academic Emergency Medicine Official Journal of the Society for Academic Emergency Medicine, 2014, 13(11):1109-1113. [5] Batal H, Tench J, Mcmillan S, et al. Predicting patient visits to an urgent care clinic using calendar variables[J]. Academic Emergency Medicine, 2014, 8(1):48-53. [6] 刁秀芳,李望晨.基于SVM模型和ARIMA模型在擬合病毒性肝炎發(fā)病率中的應(yīng)用[J].現(xiàn)代預(yù)防醫(yī)學(xué),2017,44(09):1545-1548. Diao XF, Li WC. SVM-and ARIMA-based infectious disease forecasting[J]. Modern Preventive Medicine, 2017, 44(9): 1545-1548. [7] Gul M, Guneri A F. Forecasting patient length of stay in an emergency department by artificial neural networks[J]. Journal of Aeronautics & Space Technologies, 2015, 8(2):43-48. [8] Yousefi M, Ferreira RP M, Yousefi M. A modeling approach for daily patient visits forecasting in an emergency department[C]// International Conference on Engineering Optimization - Iguassu Falls. Brazil:EngOpt, 2016:19-23. [9] Qiao Z , Sun N , Li X , et al. Using machine learning approaches for emergency room visit prediction based on electronic health record data[J]. Studies in Health Technology and Informatics, 2018, 247:111-115. [10] 鄭凱文,楊超.基于迭代決策樹(GBDT)短期負(fù)荷預(yù)測(cè)研究[J].貴州電力技術(shù),2017,20(2):82-84+90. Zheng KW, Yang C. Research of short-term load forecasting based on gradient boosting decision tree (GBDT)[J]. Guizhou Electric Power Technology, 2017, 20(2):82-84,90. [11] 丁聰,倪少權(quán),呂紅霞.基于梯度提升的城市軌道交通客流量預(yù)測(cè)分析[J].城市軌道交通研究,2018,21(9):60-63. Ding C, Ni SQ, Lyu HX. Forecast and analysis of urban rail transit passenger flow based on gradient boosting[J].Urban Mass Transit,2018,21(9):60-63. [12] 蔣怡玥,董蜀黔,周淑敏.基于集成算法的路段短時(shí)行駛時(shí)間預(yù)測(cè)[J].山東科學(xué),2018,31(4):118-125. Jiang YY, Dong SQ, Zhou SM. Short term prediction of road travel time based on an ensemble algorithm[J]. Shandong Science,2018,31(4):118-125. [13] Breiman L. Random forest[J]. Machine Learning. 2001, 45(1): 5-32. [14] Friedman JH. Greedy function approximation: a gradient boosting machine[J].The Annals of Statistics,2001,29( 5) : 1189-1232. [15] 李航.統(tǒng)計(jì)學(xué)習(xí)方法[M]北京:清華大學(xué)出版社,2012. [16] Freund Y. Boosting a weak learning algorithm by majority[J]. Information and Computation. 1995, 121(2): 256-285.
|