51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于Golay互補序列的20 MHz眼科超聲成像方法

20 MHz ophthalmic ultrasound imaging based on golay complementary sequence

作者: 王曉春  楊軍  計建軍  周盛 
單位:中國醫(yī)學(xué)科學(xué)院生物醫(yī)學(xué)工程研究所(天津 300192)
關(guān)鍵詞: 眼科;超聲;圖像;探測深度;Golay互補序列 
分類號:R318
出版年·卷·期(頁碼):2021·40·2(167-173)
摘要:

目的 研究一種新型20 MHz眼科超聲掃描成像方法,可在滿足臨床成像分辨力和聲能安全性的前提下,顯著提高圖像的探測深度,拓展20 MHz超聲頻段的臨床應(yīng)用范圍。方法 通過8位Golay互補序列,激勵超聲換能器產(chǎn)生超聲波。回波信息經(jīng)高速采集與匹配濾波后,采用相鄰正、反編碼掃描線數(shù)據(jù)復(fù)用的方法交替相加,完成解碼運算。實現(xiàn)在保證圖像掃描線數(shù)和掃查幀頻的前提下,實時顯像。最后通過鎢絲靶線和仿組織超聲體模實驗驗證了新的成像方法在保持原有分辨能力與掃描幀頻不變的前提下,提高了圖像的探測深度。結(jié)果 與傳統(tǒng)單脈沖模式相比,Golay互補編碼模式成像中軸向分辨率與側(cè)向分辨率分別達(dá)到80 μm和150 μm,小信號探測深度增加約0.5 cm,圖像信噪比也得到顯著改善。結(jié)論 基于Golay互補序列實現(xiàn)20 MHz眼部組織超聲成像,相對于傳統(tǒng)成像方式可極大改善圖像質(zhì)量,具有很好的臨床應(yīng)用前景。

Objective To study a new 20MHz ophthalmic ultrasound scanning imaging method, which can significantly improve the detection depth of the image and expand the clinical application range of 20MHz ultrasound frequency band on the premise of meeting the clinical imaging resolution and sound energy safety. Methods An 8-bit Golay complementary sequence was used to excite the ultrasonic transducer to generate ultrasonic wave. After high-speed acquisition and matched filtering, the echo information was added alternately by the method of adjacent forward and inverse coded scan line data multiplexing to complete decoding operation. Real time imaging can be realized on the premise of ensuring the number of image scanning lines and scanning frame rate. Finally, experiments on tungsten wire target lines and tissue-mimiking ultrasound phantom verified that the new imaging method can improve the detection depth of the image while keeping the original resolution and scanning frame rate unchanged. Results Compared with single-pulse mode, the axial resolution and lateral resolution of Golay complementary coding mode were 80 μm and 150 μm respectively, and the detection depth of small signal was increased by about 0.5 cm, and the signal-to-noise ratio of the image was also significantly improved. Conclusions Compared with the traditional imaging methods, the image quality of 20MHz eye tissue ultrasound imaging based on Golay complementary sequence can be greatly improved, which has a good clinical application prospect.

參考文獻(xiàn):

[1] Garoon RB, Medina CA, Scelfo C, et al. Retinocytoma with vitreous seeding: new insights from enhanced depth imaging optical     coherence tomography and high-resolution posteior segment ultrasonogaphy[J]. Retinal     Cases and Brief Reports, 2021, 15(1): 68-70.

[2] Martins MF, Kiefer K, Kanecadan LAA, et al. Comparisons of choroidal nevus measurements obtained using 10 and 20-MHz ultrasound and spectral domain optical coherence tomography[J]. Arquivos Brasileiros Oftalmologia, 2017, 80(2): 78–83.

[3]  胡雅楠, 林松. 超聲與頻域光相干斷層測量黃斑厚度相關(guān)性研究[J]. 中國超聲醫(yī)學(xué)雜志, 2019, 35(12): 1057-1059.

Hu YN, Lin S. Correlation between ultrasound with spectral domain optical coherence tomography in measurement of macular thickness[J]. Chinese Journal of Ultrasound in Medicine, 2019, 35(12): 1057-1059.

[4] Tabatabaei A, Kiarudi MY, Ghassemi F, et al. Evaluation of posterior lens capsule by 20-MHz ultrasound probe in traumatic cataract[J]. American Journal of Ophthalmology, 2012, 153(1): 51-54.

[5] Skandesh BM, Kumar M, Raju N S. Role of high resolution sonography (B-SCAN) in the evaluation of posterior segment lesions of eye[J]. International Journal of Contemporary Medicine, Surgery and Radiology, 2018, 3(3): C11-C16. 

[6] 史銘宇, 邱輝, 高尚,等. 觀察20MHz高頻B型超聲在眼外肌的應(yīng)用[J]. 國際眼科雜志, 2012,12(4): 723-725.

Shi MY, Qiu H, Gao S, et al. Application of 20 MHz high frequency B mode ultrasound in extraocular muscle[J]. International Eye Science, 2012,12(4): 723-725.

[7] Kiseleva TN, Zaitsev MS, Lugovkina KV. The safety of diagnostic ultrasound in ophthalmology[J]. Ophthalmology in Russia, 2018, 15(4): 447-454.

[8] Choi T, Chang S, Kim TH, et al. Golay-coded excitations for rotational intravascular ultrasound imaging[J]. IEEE Access, 2019, 7: 119718-119728.

[9] Deng W,Chen X,Yang J, et al. Ultrasound endoscopic imaging algorithm based on coded excitation and coherence factor[J]. Laser and Optoelectronics Progress, 2019, 56(14):141101.

[10] 和曉念, 林浩銘, 刁現(xiàn)芬,等.超聲編碼激勵在瞬時彈性成像檢測中的應(yīng)用[J]. 聲學(xué)技術(shù), 2017, 36(4):340-345.

He XN, Lin HM, Diao XF, et al. Application of ultrasound coded excitation in transient elastography detection[J]. Technical Acoustics, 2017, 36(4):340-345.

[11] Zhang H, Wu S, Ta D, et al. Coded excitation of ultrasonic guided waves in long bone fracture assessment[J]. Ultrasonics, 2014, 54(5): 1203-1209.

[12] 王曉春, 周盛, 計建軍,等.Golay互補序列在眼科超聲生物測量中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2015, 34(1):38-42,95.

Wang XC, Zhou S, Ji JJ, et al. Application of Golay-coded pulse excitation in ophthalmological ultrasound biometer[J]. Beijing Biomedical Engineering, 2015, 34(1): 38-42, 95.

[13] Yu JG, Liu PH, Shen CC, et al. SNR improvement and range side lobe suppression in Golay-encoded Doppler detection for ultrasound high-frequency swept-scan imaging system[J]. Biomedical Signal Processing and Control, 2018, 41: 31-39.

[14] Zhang SQ,Ma R,Yin T, et al. M-sequence-coded excitation for magneto-acoustic imaging[J]. Medical & Biological Engineering & Computing, 2019, 57(5): 1059–1067.

[15] 曾維貴,朱平云,孫迎豐,等. 基于MAC序列的抗回波遮擋準(zhǔn)連續(xù)波雷達(dá)波形設(shè)計[J].電訊技術(shù), 2013, 53(1): 82-87.  

    Zeng W, Zhu P, Sun Y, et al. A quai-CW radar waveform design based on multimode arbitrary code sequence to avoid echo eclipse[J]. Telecommunication Engineering, 2013, 53(1): 82-87.

[16] Kang J, Kim Y, Lee W, et al. A new dynamic complex baseband pulse compression method for chirp-coded excitation in medical ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freqency Control, 2017, 64(11):1698-1710.

[17] Lashkari B, Zhang K, Dovlo E, et al. Coded excitation waveform engineering for high frame rate synthetic aperture ultrasound imaging[J]. Ultrasonics, 2017, 77: 121-132.

[18] Kiefer DA, Fink M, Rupitsch SJ. Simultaneous ultrasonic measurement of thickness and speed of sound in elastic plates using coded excitation signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freqency Control,  2017, 64(11):1744-1757.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]