51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
大動(dòng)物節(jié)段性骨缺損模型的研究進(jìn)展

Research progress of large animal segmental bone defect models

作者: 陳胡貴  覃建國(guó)  李理  石展英  潘浩波  李兵  崔旭 
單位:廣西醫(yī)科大學(xué)第四附屬醫(yī)院/柳州市工人醫(yī)院(廣西柳州 545005) 中國(guó)科學(xué)院院深圳先進(jìn)技術(shù)研究院(廣東深圳 518055)
關(guān)鍵詞: 節(jié)段性骨缺損;  生物材料;  骨缺損修復(fù);  動(dòng)物模型 
分類號(hào):R318
出版年·卷·期(頁(yè)碼):2021·40·2(203-208)
摘要:

四肢節(jié)段性骨缺損,尤其是臨界尺寸節(jié)段性骨缺損的修復(fù)仍然是骨科最具挑戰(zhàn)性的難題之一。人工骨材料逐漸取代自體骨及同種異體骨成為骨缺損修復(fù)的研究熱點(diǎn)。為了評(píng)價(jià)人工骨材料作為骨缺損修復(fù)替代物的發(fā)展前景,有必要建立可重復(fù)且有效的節(jié)段性骨缺損動(dòng)物模型,以便成功地探索和轉(zhuǎn)化這一領(lǐng)域的新成果。盡管眾多學(xué)者都致力該領(lǐng)域的研究,但目前尚無一種理想的大動(dòng)物節(jié)段性骨缺損模型能完美模擬人類骨結(jié)構(gòu)和力學(xué)特征。因此本文將重點(diǎn)介紹用于評(píng)價(jià)人工骨材料常用且有效的大動(dòng)物節(jié)段性骨缺損模型的研究進(jìn)展,對(duì)臨界尺寸骨缺損大小的取值、常用建模動(dòng)物的優(yōu)缺點(diǎn)、節(jié)段性骨缺損模型的建立、骨材料的不同固定方法等方面進(jìn)行綜述,以促進(jìn)大動(dòng)物節(jié)段性骨缺損模型的優(yōu)化改進(jìn)。

The repair of segmental bone defects of extremities, especially those of critical size, is still one of the most challenging problems in orthopaedics. Artificial bone has gradually replaced autogenous bone and allogeneic bone to become the research focus of bone defect repair. In order to evaluate the development of artificial bone as a substitute for repairing bone defects, it is necessary to establish a reproducible and effective animal model of segmental bone defects in order to explore and transform the new achievements in this field. Although many researchers have been devoted to this field, there is not an ideal model of segmental bone defects in large animals that can perfectly simulate human bone structure and mechanical characteristics. Therefore, this article will focus on the evaluation of artificial bone materials commonly used and effective large animal segmental bone defects model of research progress. This article reviews the critical size of bone defect, the advantages and disadvantages of different modeling animals, the establishment of segmental bone defect model in large animals, and the different fixation methods of bone materials, to improve the model of segmental bone defect in large animals.

參考文獻(xiàn):

[1] Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions [J]. Clinical Orthopaedics and Related Research, 1986 (205): 299-308.

[2] 吳航天, 趙行琪, 胡巖君,等. 骨折不愈合的診斷及治療建議 [J]. 生物骨科材料與臨床研究, 2019, 16(4): 33-36.

Wu HT, Zhao XQ, Hu YJ, et al. The diagnosis and treatment recommendations of bone nonunion[J].  Orthopaedic Biomechanics Materials and Clinical Study, 2019, 16(4): 33-36.

[3] Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model [J]. Nanomaterials, 2018, 8(12): 999.

[4] Chadayammuri V, Hake M, Mauffrey C. Innovative strategies for the management of long bone infection: a review of the Masquelet technique [J]. Patient Safety in Surgery, 2015, 9: 32.

[5] 徐永清, 范新宇. Ilizarov技術(shù)和Masquelet技術(shù)在長(zhǎng)骨大段骨缺損治療中的應(yīng)用比較 [J]. 中華創(chuàng)傷骨科雜志, 2019, 21(8): 733-736.

Xu YQ, Fan XY. Comparison of Ilizarov and Masquelet techniques in the treatment of long bone defects [J]. Chinese Journal of Orthopaedic Trauma, 2019, 21(8): 733-736.

[6] Mcgovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease [J]. Disease Models & Mechanisms, 2018, 11(4): 033084.

[7] Kirby GTS, White LJ, Steck R, et al. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects [J]. Materials, 2016, 9(4): 259.

[8] Christou C, Oliver RA, Pelletier MH, et al. Ovine model for critical-size tibial segmental defects [J]. Comparative Medicine, 2014, 64(5): 377-385.

[9] Lammens J, Maréchal M, Geris L, et al. Warning about the use of critical-size defects for the translational study of bone repair: analysis of a sheep tibial model [J]. Tissue Engineering Part C-methods, 2017, 23(11): 694-699.

[10] Honnami M, Choi S, Liu IL, et al. Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel [J]. Journal of Artificial Organs, 2017, 20(1): 91-98.

[11] Kim Y, Kang BJ, Kim WH, et al. Evaluation of mesenchymal stem cell sheets overexpressing BMP-7 in canine critical-sized bone defects [J]. International Journal of Molecular Sciences, 2018, 19(7): 2073.

[12] Lin CC, Lin SC, Chiang CC, et al. Reconstruction of bone defect combined with massive loss of periosteum using injectable human mesenchymal stem cells in biocompatible ceramic scaffolds in a porcine animal model [J]. Stem Cells International, 2019, 2019: 6832952.

[13] Chu W, Gan Y, Zhuang Y, et al. Mesenchymal stem cells and porous beta-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia [J]. Stem Cell Research & Therapy, 2018, 9: 157.

[14] Ben-David D, Fishman B, Rubin G, et al. Autologous cell-coated particles for the treatment of segmental bone defects-a new cell therapy approach [J]. Journal of Orthopaedic Surgery and Research, 2019, 14: 198.

[15] Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering [J]. Connective Tissue Research, 2015, 56(3): 175-194.

[16] Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties [J]. Bio-Medical Materials and Engineering, 1998, 8(1): 1-9.

[17] Thorwarth M, Schultze-Mosgau S, Kessler P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite [J]. Journal of Oral Maxillofacial Surgery, 2005, 63(11): 1626-1633.

[18] Schlegel KA, Lang FJ, Donath K, et al. The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials [J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006, 102(1): 7-13.

[19] Taylor WR, Ehrig RM, Heller MO, et al. Tibio-femoral joint contact forces in sheep [J]. Journal of Biomechanics, 2006, 39(5): 791-798.

[20] Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research [J]. Biomaterials, 2009, 30(12): 2149-2163.

[21] Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction [J]. Nature Protocols, 2020,15(3): 877-942.

[22] 賈軍鋒, 唐承杰, 樂勁濤,等. 脛骨遠(yuǎn)端骨折3種不同固定方式的有限元分析 [J]. 中國(guó)組織工程研究, 2019, 23(32): 5188-5194.

Jia JF, Tang CJ, Yue JT, et al. Finite element analysis of three different fixation methods for distal tibial fracture[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(32): 5188-5194.

[23] R?derer G, Gebhard F, Duerselen L, et al. Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating [J]. Injury, 2014, 45(10): 1648-1652.

[24] Wagels M, Rowe D, Senewiratne S, et al. Soft tissue reconstruction after compound tibial fracture: 235 cases over 12 years [J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2015, 68(9): 1276-1285.

[25] Tufekci P, Tavakoli A, Dlaska C, et al. Early mechanical stimulation only permits timely bone healing in sheep [J]. Journal of Orthopaedic Research, 2017, 36(6): 1790-1796.

[26] Pobloth AM, Schell H, Petersen A, et al. Tubular open‐porous β‐tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model [J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): 897-911.

[27] Ebraheim NA, Evans B, Liu X, et al. Comparison of intramedullary nail, plate, and external fixation in the treatment of distal tibia nonunions [J]. International Orthopaedics, 2017, 41(9): 1925-1934.

[28] Haubruck P, Ober J, Heller R, et al. Complications and risk management in the use of the reaming-irrigator-aspirator (RIA) system: RIA is a safe and reliable method in harvesting autologous bone graft [J]. PLoS One, 2018, 13(4): e0196051.

[29] Christou C, Oliver RA, Yu Y, et al. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects [J]. PLoS One, 2014, 9(12): e114122.

[30] Augat P, von Rüden C. Evolution of fracture treatment with bone plates [J]. Injury, 2018, 49(Suppl 1): S2-S7.

[31] Bottlang M, Tsai S, Bliven EK, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing [J]. The Journal of Bone and Joint Surgery, 2016, 98(6): 466-474.

 


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]