51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
醫(yī)學(xué)圖像深度學(xué)習(xí)處理方法的研究進(jìn)展

Research progress of deep learning processing methods for medical images

作者: 佟超  韓勇  馮巍  李偉銘  陶麗新  郭秀花 
單位:首都醫(yī)科大學(xué)公共衛(wèi)生學(xué)院(北京100069) 臨床流行病學(xué)北京市重點(diǎn)實(shí)驗(yàn)室(北京100069)
關(guān)鍵詞: 醫(yī)學(xué)圖像;  特征提取;  分割診斷;  深度學(xué)習(xí) 
分類號:R318.01
出版年·卷·期(頁碼):2021·40·2(198-202)
摘要:

由于醫(yī)學(xué)圖像數(shù)據(jù)爆炸式增長,傳統(tǒng)依靠醫(yī)生人工對醫(yī)學(xué)圖像進(jìn)行分析診斷,醫(yī)生易出現(xiàn)疲勞,不僅工作效率低下,工作量大,還容易產(chǎn)生誤診、漏診。隨著人工智能(artificial intelligence,AI)技術(shù)的發(fā)展與應(yīng)用,機(jī)器學(xué)習(xí)(machine learning,ML),尤其是深度學(xué)習(xí)(deep learning,DL)在醫(yī)學(xué)圖像分析領(lǐng)域發(fā)揮著越來越重要的作用。為了進(jìn)一步了解DL在醫(yī)學(xué)圖像自動分割和分類識別中的研究,本文對DL及其在醫(yī)學(xué)圖像分析領(lǐng)域的研究進(jìn)展進(jìn)行綜述。為DL在解決醫(yī)學(xué)圖像分析診斷方面提供有益參考。

Due to the explosive growth of medical image data, traditionally relying on doctors to analyze and diagnose medical images manually, doctors are prone to fatigue, not only low efficiency and heavy workload, but also easy to misdiagnose and miss diagnoses. With the development and application of artificial intelligence technology, machine learning, especially deep learning, is playing an increasingly important role in the field of medical image analysis. In order to further understand the research of deep learning in automatic segmentation and classification and recognition of medical images, this article reviews the research progress of deep learning and its applications in the field of medical image analysis. Provide a useful reference for deep learning in solving medical image analysis and diagnosis.

參考文獻(xiàn):

[1] 吳揚(yáng). 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像研究綜述[J]. 電腦知識與技術(shù),2020,16(19): 174-176.

Wu Y. A review of medical image research based on deep learning[J]. Computer Knowledge and Technology, 2020, 16(19): 174-176.

[2] Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks [J]. Medical Image Analysis, 2017, 35:18-31.

[3] 毛雷. 基于深度卷積網(wǎng)絡(luò)的MRI圖像腦腫瘤自動分割研究 [D]. 重慶:重慶理工大學(xué),2018.

Mao L. A study on automatic segmentation of brain tumor using deep convolution network in MRI images [D]. Chongqing: Chongqing University of Technology,2018.

[4] Men K, Zhang T, Chen X, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning[J]. Physica Medica, 2018, 50: 13-19.

[5] 馬偉, 劉鴻利, 孫明建,等. 新型乳腺磁共振增強(qiáng)圖像腫瘤區(qū)域的自動分割模型 [J]. 中國生物醫(yī)學(xué)工程學(xué)報(bào), 2019, 38(1): 28-34.

Ma W, Liu HL, Sun MJ, et al. A novel automated tumor segmentation model for enhanced breast MRI [J]. Chinese?Journal ofBiomedical Engineering,2019, 38(1): 28-34.

[6] Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer [J]. Radiation Oncology, 2019, 14(1): 213.

[7] 黃賽. 基于深度學(xué)習(xí)的MR圖像肝臟腫瘤自動化分割方法的研究 [D]. 南京:南京大學(xué),2018.

Huang S. Study on automatic segmentation of liver tumor based on of MR images [D]. Nanjing: Nanjing University, 2018.

[8] Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study [J]. EBioMedicine, 2020, 56:102780.

[9] 張璐. 基于深度學(xué)習(xí)的淋巴結(jié)自動分割算法研究 [D]. 杭州:浙江大學(xué),2019.

Zhang L. Research on automatic segementation algorithm of lymph nodes based on deep learning [D].Hangzhou: Zhejiang University, 2019.

[10] 趙飛, 劉杰. 基于卷積神經(jīng)網(wǎng)絡(luò)和圖像顯著性的心臟CT圖像分割 [J]. 北京生物醫(yī)學(xué)工程, 2020, 39(1): 48-55.

Zhao F, Liu J. Cardiac CT image segmentation based on convolutional neural network and image saliency [J]. Beijing Biomedical Engineering,2020, 39(1): 48-55.

[11] 劉云鵬, 蔡文立, 洪國斌,等. 應(yīng)用圖像塊和全卷積神經(jīng)網(wǎng)絡(luò)的肩關(guān)節(jié)MRI自動分割 [J]. 中國圖象圖形學(xué)報(bào), 2018, 23(10): 1558-1570.

Liu YP, Cai WL, Hong GB, et al. Automatic segmentation of shoulder joint in MRI by using patch-wise and full-image fully convolutional networks [J]. Journal of Image and Graphics, 2018, 23(10): 1558-1570.

[12] 冉昭, 簡俊明, 王蒙蒙,等. 基于全卷積神經(jīng)網(wǎng)絡(luò)的直腸癌腫瘤磁共振影像自動分割方法 [J]. 北京生物醫(yī)學(xué)工程, 2019, 38(5): 465-471.

Ran Z, Jian JM, Wang MM, et al. Automatic segmentation method based on full convolution neural network for rectal cancer tumors in magnetic resonance image [J]. Beijing Biomedical Engineering,2019, 38(5): 465-471.

[13] Dai L, Fang R, Li H, et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(5): 1149-1161.

[14] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.

[15] Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment [J]. Scientific Reports, 2017, 7(1): 9425.

[16] Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI?[J]. European Radiology, 2019, 29(7): 3338-3347.

[17] Yasaka K, Akai H, Abe O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study [J]. Radiology, 2018, 286(3): 887-896.

[18] 茹仙古麗·艾爾西丁, 艾爾潘江·庫德來提, 嚴(yán)傳波,等. 卷積神經(jīng)網(wǎng)絡(luò)在肝癌病理切片圖像分類中的應(yīng)用 [J]. 北京生物醫(yī)學(xué)工程, 2020, 39(1): 29-33.

Roxangul A, Arpanjan K, Yan CB, et al. Application of convolutional neural network in image classification of liver cancer pathological section [J]. Beijing Biomedical Engineering, 2020, 39(1): 29-33.

[19] Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J]. Nature Medicine, 2019, 25(6): 954-961.

[20] Ciompi F, Chung K, Van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J]. Scientific Reports, 2017, 7(1): 46479.

[21] Jiang H, Ma H, Qian W, et al. An Automatic detection system of lung nodule based on multigroup patch-based deep learning network [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 1227-1237.

[22] Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J]. Nature Medicine, 2018, 24(10): 1559-1567.

[23] González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography [J]. American Journal of Respiratory and Critical Care Medicine, 2018, 197(2): 193-203.

[24] Walsh SLF, Calandriello L, Silva M, et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study [J]. The Lancet Respiratory Medicine, 2018, 6(11): 837-845.

[25] Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, et al. Pulmonary artery-vein classification in CT images using deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2428-2440.

[26] Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis [J]. Medical Image Analysis, 2018, 44: 72-85.

[27] Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm [J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.

[28] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118.

[29] Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain [J]. Radiology,2019, 290(2): 456-464.

[30] Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma [J]. Clinical?Cancer Research, 2019, 25(14): 4271-4279.

[31] Jeyaraj PR, Nadar ERS. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm [J]. Journal of?Cancer Research and Clinical Oncology, 2019, 145(4): 829-837.

[32] Lee JH, Ha EJ, Kim JH. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT [J]. European Radiology, 2019, 29(10): 5452-5457.

[33] Gandomkar Z, Brennan PC, Mello-Thoms C. MuDeRN: multi-category classification of breast histopathological image using deep residual networks [J]. Artificial Intelligence in?Medicine, 2018, 88:14-24.

[34] Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J]. PLoS Medicine, 2018, 15(11): e1002699.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]