[1] 吳揚(yáng). 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像研究綜述[J]. 電腦知識與技術(shù),2020,16(19): 174-176.
Wu Y. A review of medical image research based on deep learning[J]. Computer Knowledge and Technology, 2020, 16(19): 174-176.
[2] Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks [J]. Medical Image Analysis, 2017, 35:18-31.
[3] 毛雷. 基于深度卷積網(wǎng)絡(luò)的MRI圖像腦腫瘤自動分割研究 [D]. 重慶:重慶理工大學(xué),2018.
Mao L. A study on automatic segmentation of brain tumor using deep convolution network in MRI images [D]. Chongqing: Chongqing University of Technology,2018.
[4] Men K, Zhang T, Chen X, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning[J]. Physica Medica, 2018, 50: 13-19.
[5] 馬偉, 劉鴻利, 孫明建,等. 新型乳腺磁共振增強(qiáng)圖像腫瘤區(qū)域的自動分割模型 [J]. 中國生物醫(yī)學(xué)工程學(xué)報(bào), 2019, 38(1): 28-34.
Ma W, Liu HL, Sun MJ, et al. A novel automated tumor segmentation model for enhanced breast MRI [J]. Chinese?Journal ofBiomedical Engineering,2019, 38(1): 28-34.
[6] Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer [J]. Radiation Oncology, 2019, 14(1): 213.
[7] 黃賽. 基于深度學(xué)習(xí)的MR圖像肝臟腫瘤自動化分割方法的研究 [D]. 南京:南京大學(xué),2018.
Huang S. Study on automatic segmentation of liver tumor based on of MR images [D]. Nanjing: Nanjing University, 2018.
[8] Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study [J]. EBioMedicine, 2020, 56:102780.
[9] 張璐. 基于深度學(xué)習(xí)的淋巴結(jié)自動分割算法研究 [D]. 杭州:浙江大學(xué),2019.
Zhang L. Research on automatic segementation algorithm of lymph nodes based on deep learning [D].Hangzhou: Zhejiang University, 2019.
[10] 趙飛, 劉杰. 基于卷積神經(jīng)網(wǎng)絡(luò)和圖像顯著性的心臟CT圖像分割 [J]. 北京生物醫(yī)學(xué)工程, 2020, 39(1): 48-55.
Zhao F, Liu J. Cardiac CT image segmentation based on convolutional neural network and image saliency [J]. Beijing Biomedical Engineering,2020, 39(1): 48-55.
[11] 劉云鵬, 蔡文立, 洪國斌,等. 應(yīng)用圖像塊和全卷積神經(jīng)網(wǎng)絡(luò)的肩關(guān)節(jié)MRI自動分割 [J]. 中國圖象圖形學(xué)報(bào), 2018, 23(10): 1558-1570.
Liu YP, Cai WL, Hong GB, et al. Automatic segmentation of shoulder joint in MRI by using patch-wise and full-image fully convolutional networks [J]. Journal of Image and Graphics, 2018, 23(10): 1558-1570.
[12] 冉昭, 簡俊明, 王蒙蒙,等. 基于全卷積神經(jīng)網(wǎng)絡(luò)的直腸癌腫瘤磁共振影像自動分割方法 [J]. 北京生物醫(yī)學(xué)工程, 2019, 38(5): 465-471.
Ran Z, Jian JM, Wang MM, et al. Automatic segmentation method based on full convolution neural network for rectal cancer tumors in magnetic resonance image [J]. Beijing Biomedical Engineering,2019, 38(5): 465-471.
[13] Dai L, Fang R, Li H, et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(5): 1149-1161.
[14] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.
[15] Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment [J]. Scientific Reports, 2017, 7(1): 9425.
[16] Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI?[J]. European Radiology, 2019, 29(7): 3338-3347.
[17] Yasaka K, Akai H, Abe O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study [J]. Radiology, 2018, 286(3): 887-896.
[18] 茹仙古麗·艾爾西丁, 艾爾潘江·庫德來提, 嚴(yán)傳波,等. 卷積神經(jīng)網(wǎng)絡(luò)在肝癌病理切片圖像分類中的應(yīng)用 [J]. 北京生物醫(yī)學(xué)工程, 2020, 39(1): 29-33.
Roxangul A, Arpanjan K, Yan CB, et al. Application of convolutional neural network in image classification of liver cancer pathological section [J]. Beijing Biomedical Engineering, 2020, 39(1): 29-33.
[19] Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J]. Nature Medicine, 2019, 25(6): 954-961.
[20] Ciompi F, Chung K, Van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J]. Scientific Reports, 2017, 7(1): 46479.
[21] Jiang H, Ma H, Qian W, et al. An Automatic detection system of lung nodule based on multigroup patch-based deep learning network [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 1227-1237.
[22] Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J]. Nature Medicine, 2018, 24(10): 1559-1567.
[23] González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography [J]. American Journal of Respiratory and Critical Care Medicine, 2018, 197(2): 193-203.
[24] Walsh SLF, Calandriello L, Silva M, et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study [J]. The Lancet Respiratory Medicine, 2018, 6(11): 837-845.
[25] Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, et al. Pulmonary artery-vein classification in CT images using deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2428-2440.
[26] Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis [J]. Medical Image Analysis, 2018, 44: 72-85.
[27] Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm [J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.
[28] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118.
[29] Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain [J]. Radiology,2019, 290(2): 456-464.
[30] Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma [J]. Clinical?Cancer Research, 2019, 25(14): 4271-4279.
[31] Jeyaraj PR, Nadar ERS. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm [J]. Journal of?Cancer Research and Clinical Oncology, 2019, 145(4): 829-837.
[32] Lee JH, Ha EJ, Kim JH. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT [J]. European Radiology, 2019, 29(10): 5452-5457.
[33] Gandomkar Z, Brennan PC, Mello-Thoms C. MuDeRN: multi-category classification of breast histopathological image using deep residual networks [J]. Artificial Intelligence in?Medicine, 2018, 88:14-24.
[34] Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J]. PLoS Medicine, 2018, 15(11): e1002699.
?
|