51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于深度學(xué)習(xí)的前房角開閉狀態(tài)自動(dòng)識別

Automatic recognition of the open angle and angle closure of the anterior chamber angle based on deep learning

作者: 王文賽  邢恩銘  秦魯寧  周盛  楊軍  林松 
單位:中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院,生物醫(yī)學(xué)工程研究所(天津 300192) 天津醫(yī)科大學(xué)眼科醫(yī)院 (天津 300384) 通信作者:林松,主管技師。E-mail:[email protected]]
關(guān)鍵詞: 深度學(xué)習(xí);  前房角;  超聲生物顯微鏡;  VGG16;  自動(dòng)識別 
分類號:R318.04
出版年·卷·期(頁碼):2021·40·3(221-226)
摘要:

目 的 基 于 深 度 學(xué) 習(xí) ( deep learning, DL ) 和 前 房 角 超 聲 生 物 顯 微 鏡 ( ultrasoundbiomicroscopy, UBM)圖像進(jìn)行前房角開閉狀態(tài)的自動(dòng)識別,為原發(fā)性閉角型青光眼的臨床自動(dòng)診斷提供輔助分析。 方法 數(shù)據(jù)集為天津醫(yī)科大學(xué)眼科醫(yī)院采集的眼科疾病患者的前房角 UBM 圖像,由眼科專家將 UBM 圖像分為房角開放和房角關(guān)閉兩類,按照 6∶2∶2 的比例隨機(jī)設(shè)置訓(xùn)練集、驗(yàn)證集和測試集。 為提高深度學(xué)習(xí)模型的魯棒性和識別精度,對訓(xùn)練集圖像隨機(jī)進(jìn)行了旋轉(zhuǎn)、平移和反轉(zhuǎn)等不影響房角形態(tài)的數(shù)據(jù)增強(qiáng)操作。 比較 VGG16、VGG19、DenseNet121、Xception 和 InceptionV3 網(wǎng)絡(luò)模型在本文數(shù)據(jù)集上的遷移學(xué)習(xí)結(jié)果,根據(jù)遷移學(xué)習(xí)結(jié)果對 VGG16 進(jìn)行卷積層和全連接層的微調(diào),用微調(diào)后的VGG16 模型實(shí)現(xiàn)前房角開閉狀態(tài)的自動(dòng)識別。用接收者操作特征曲線下面積和準(zhǔn)確率等評價(jià)指標(biāo)對模型識別結(jié)果進(jìn)行定量評價(jià),用類激活熱力圖可視化模型識別前房角開閉狀態(tài)時(shí)的主要關(guān)注區(qū)域。結(jié)果 類激活熱力圖表明微調(diào)后的 VGG16 模型識別前房角開閉狀態(tài)的主要關(guān)注區(qū)域?yàn)榉拷侵行膮^(qū)域,與眼科專家的識別依據(jù)一致。 該模型的識別準(zhǔn)確率為 96接收者操作特征曲線下面積為 0。結(jié)論 基于深度學(xué)習(xí)和前房角 UBM 圖像能夠以較高的準(zhǔn)確率實(shí)現(xiàn)前房角開閉狀態(tài)的自動(dòng)識別,有利于原發(fā)性閉角型青光眼自動(dòng)診斷技術(shù)的發(fā)展。

Objective Based on the deep learning ( DL ) algorithm and UBM ( ultrasound biomicroscope) images of the anterior chamber angle,the automatic recognition of the open angle and angle closure of the anterior chamber angle is performed,which provides auxiliary analysis for the clinical automatic diagnosis of primary angle?closure glaucomaMethods The data set is the UBM image of the anterior chamber angle of patients with eye diseases collected by the Tianjin medical university eye hospital images into two types:open angle and closed angle,and randomly set the training set,validation set,and test set according to the ratio of 6∶2∶2 DenseNet121,Xception, and InceptionV3 network models on the data set in this article transfer learning results,fine-tune the convolutional layer and fully connected layer of VGG16,and use the fine?tuned VGG16 model to automatically realize the anterior chamber Recognition of angle opening and closing status evaluate the model recognition results,and the class activation map is used to visualize the main areas of interest when the model recognizes the opening and closing state of the anterior chamber angleResults The class activation map shows that the focus area of the fine?tuned VGG16 model is the central area of the corner 96Conclusions Based on deep learning and UBM images of the anterior chamber angle,the automatic recognition of the opening and closing state of the anterior chamber angle can be realized with high accuracy,which is beneficial to the development of automatic diagnosis technology for primary angle?closure glaucoma.

參考文獻(xiàn):

[1] Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J].Ophthalmology,2014,121:2081–2090.

[2] Mansoori T, Balakrishna N. Anterior segment morphology in primary angle closure glaucoma using ultrasound biomicroscopy[J].?Journal of Current Glaucoma Practice. 2017,11(3):86-91.

[3]?劉豐偉,李漢軍,張逸鶴,等.人工智能在醫(yī)學(xué)影像診斷中的應(yīng)用[J].北京生物醫(yī)學(xué)工程,2019,38(2):206-211.

Liu FW,Li HJ,Zhang YH,et al.?Application of artificial intelligence in medical imaging diagnosis[J].?Beijing Biomedical Engineering,2019,38(2):206-211.

[4] Ting DSW,Cheung CY, Lim G, et?al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA ,2017,318:2211–2223.

[5]?Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology,2017,124:962–969.

[6]?Chen X, Xu Y, Wong DWK, et al. Glaucoma detection based on deep convolutional neural network[C]//2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milan:IEEE, 2015: 715-718.

[7] Xu BY, Chiang M, Chaudhary S,et al. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images[J]. American Journal of Ophthalmology,2019,208:273-280.

[8] Fu H, Baskaran M, Xu Y, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images[J]. American Journal of?Ophthalmology,?2019,203:37-45.

[9]?Shorten C , Khoshgoftaar TM . A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):1-48.

[10]Huang G, Liu Z, van Der Maaten L, et al. Densely connected convolutional networks [C] //Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii :IEEE,2017: 4700-4708.

[11]?Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas :IEEE,2016: 2818-2826.

[12]?Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii :IEEE,2017: 1251-1258.

[13]?Donahue J, Hendricks LA, Rohrbach MA, et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 677-691.

[14]?Pan SJ, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.

[15]?Selvaraju RR, Cogswell?M,Das A,et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision,2020, 128:336–359.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]