51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
全膝關(guān)節(jié)置換脛骨平臺截骨后傾角對關(guān)節(jié)接觸力的影響

The influence of different posterior tibial slope on tibio-femoral contact force after total knee arthroplast

作者: 杜明明  張寬  曾紀洲  閆松華 
單位:首都醫(yī)科大學(xué) 生物醫(yī)學(xué)工程學(xué)院(北京 100069); 首都醫(yī)科大學(xué) 臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點實驗室(北京 100069); 首都醫(yī)科大學(xué)附屬北京潞河醫(yī)院骨關(guān)節(jié)外科(北京 101149)
關(guān)鍵詞: 全膝關(guān)節(jié)置換;  脛骨平臺截骨后傾角;  有限元分析;  接觸應(yīng)力;  應(yīng)力分布 
分類號:R318.01
出版年·卷·期(頁碼):2021·40·3(227-232)
摘要:

目的 通過膝關(guān)節(jié)有限元模型模擬脛骨平臺不同截骨后傾角(posterior tibial slope,PTS),計算全膝關(guān)節(jié)置換(total knee arthroplasty , TKA)后聚乙烯襯墊、脛骨截骨面以及脛骨干處的應(yīng)力分布,探索脛骨平臺不同截骨后傾角對脛股關(guān)節(jié)接觸力的影響。方法 根據(jù)1例膝骨關(guān)節(jié)炎患者的下肢CT及MRI圖像,建立術(shù)前膝關(guān)節(jié)三維模型,而后進行模擬全膝關(guān)節(jié)置換,分別建立脛骨平臺0°、3°、6°、9°截骨后傾的膝關(guān)節(jié)有限元模型。在Abaqus中進行仿真計算,選擇靜止站立進行加載,施加軸向載荷300 N。結(jié)果  隨著脛骨平臺截骨后傾角的增加,聚乙烯襯墊內(nèi)外側(cè)接觸合力百分比沒有明顯變化,但各部位的應(yīng)力峰值隨之增加。聚乙烯襯墊內(nèi)側(cè)接觸應(yīng)力峰值從0°時的4.51 MPa增加到9°時的6.13 MPa;外側(cè)接觸應(yīng)力峰值從3.57 MPa增加到6.02 MPa。脛骨截骨面處的接觸應(yīng)力峰值從0°時的0.84 MPa增加到9°時的1.09 MPa。脛骨干處的應(yīng)力峰值從0°時的1.97MPa增加至9°時的3.23 MPa。結(jié)論  脛骨平臺截骨后傾角的增加會加大聚乙烯襯墊、脛骨截骨面、脛骨干處的應(yīng)力峰值。應(yīng)力峰值過大會增加假體磨損及松動的風(fēng)險,使得術(shù)后關(guān)節(jié)疼痛或假體翻修的可能性加大。脛骨平臺截骨后傾角直接影響到術(shù)后的膝關(guān)節(jié)功能,有待于開展大量的相關(guān)研究,綜合探索截骨規(guī)律。

Objective To explore the influence of different posterior tibial slopes (PTS) on tibio-femoral contact forces after total knee arthroplasty (TKA) by calculating the stress distribution on tibial polyethylene insert, the bone-implant surface of tibia and tibial shaft.Methods Based on CT and MRI images of a patient with knee osteoarthritis, a three dimensional knee joint model before the surgery was established, and then a TKA was performed. Finite element models of knee joints with PTS of 0°, 3°, 6°, and 9° during static standing were established, and were analyzed in Abaqus with an axial load of 300N.Results  With the increase of PTS, the percentages of the contact force on the medial and lateral sides of the tibial polyethylene insert did not change significantly, but the maximum Von-Mises stress on both sides increased. The maximum Von-Mises stress on medial tibial polyethylene insert increased from 4.51MPa at 0° to 6.13MPa at 9°, and increased from 3.57MPa at 0° to 6.02MPa at 9° on lateral. The maximum Von-Mises stress on the bone-implant surface of tibia increased from 0.84 MPa at 0° to 1.09 MPa at 9°.The maximum Von-Mises stress on tibial shaft increased from 1.97 MPa at 0° to 3.23 MPa at 9°.Conclusions The maximum Von-Mises stress on tibial polyethylene insert, the bone-implant surface of tibia and tibial shaft increases as the PTS increases after TKA. Stress spikes increase the risk of prosthesis wear and loosening, making joint pain or prosthesis revision more likely after surgery. The PTS directly affects the function of the knee after surgery, and the related studies need to be widely carried out in the future to comprehensively explore the influence of PTS.

參考文獻:

[1] 裴福興. 中國髖、膝關(guān)節(jié)置換的現(xiàn)狀及展望[J]. 中國骨與關(guān)節(jié)雜志,2012,1(1):4-8.

Pei FX. The current status and future perspective of hip and knee arthroplasty in China[J]. Chinese Journal of Bone And Joint, 2012,1(1):4-8.

[2]Van-Onsem S, Van-Der-Straeten C, Arnout N, et al. A new prediction model for patient satisfaction after total knee arthroplasty[J]. Journal ofArthroplasty, 2016, 31(12): 2660-2667.

[3]Hofmann AA, Bachus KN, Wyatt RW. Effect of the tibial cut on subsidence following total knee arthroplasty[J]. Clinical Orthopaedics and Related Research,1991(269):63-69.

[4]Dai Y, Cross MB, Angibaud LD, et al. Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty[J].Knee Surgery,Sports Traumatology, Arthroscopy,2018 ,26(11):3325-3332.

[5] Pourzal R, Cip J, Rad E, et al. Joint line elevation and tibial slope are associated with increased polyethylene wear in cruciate retaining total knee replacement[J]. Journal of Orthopaedic Research, 2020, 38(7): 1596-1606.

[6] 黃永寶,羅盛源,梁廣.股骨側(cè)假體與脛骨平臺角度對膝關(guān)節(jié)活動度的影響[J].中華關(guān)節(jié)外科雜志,2019,13(4):407-411.

Huang YB, Luo SY, Liang G. Effects of femoral flexion angle and tibial plateau tilt angle on range of motion after total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019,13(4):407-411.

[7] 齊勇,孫鴻濤,樊粵光. 脛骨后傾角對前交叉韌帶及膝關(guān)節(jié)穩(wěn)定性影響的三維有限元分析[J]. 中國運動醫(yī)學(xué)雜志, 2016, 35(8):708-713.

Qin Y, Sun HT, Fan YG. The influence of posterior tibial slope on the anterior cruciate ligament and knee joint stability[J]. Chinese Journal of Sports Medicine,2016, 35(8):708-713.

[8] 肖瑜,張福江,郭軍,等.脛骨后傾截骨對后十字韌帶保留型全膝關(guān)節(jié)置換術(shù)療效的影響[J].中華骨科雜志, 2010,30(8):743-747.

Xiao Y, Zhang FJ, Guo J,et al. Investigation of preliminary clinical outcome following PCL-retaining total knee arthroplasty with posterior tibial slope [J]. Chinese Journal of Orthopaedics, 2010,30(8):743-747.

[9]Vaidya N, Aski B, Patil R. Total knee arthroplasty and posterior tibial slope[J]. International Surgery Journal,2015,2(1):43-46.

[10]Chambers AW, Wood AR, Kosmopoulos V, et al. Effect of posterior tibial slope on flexion and anterior-posterior tibial translation in posterior cruciate-retaining total knee arthroplasty[J]. Journal of Arthroplasty, 2016, 31(1):103-106.

[11] Kang KT, Kwon SK, Son J, et al. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty[J]. Knee Surgery,Sports Traumatology, Arthroscopy,2018,26(10):3188-3195.

[12]Sun J, Yan S, Jiang Y, et al. Finite element analysis of the valgus knee joint of an obese child[J]. BioMedical Engineering OnLine, 2016, 15(Suppl2):309-321. 

[13]Donahue TLH, Hull ML, RashidMM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact[J]. Journal of Biomechanical Engineering, 2002, 124(3): 273-280.

[14]Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis–femur–soft tissue complex with simplified representation of whole body[J]. Medical Engineering & Physics, 2007, 29(10), 1167-1178.

[15]Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint.[J]. Foot & Ankle, 1988, 8(5):234-242.

[16]Villa T, Migliavacca F, Gastaldi D, et al. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations[J]. Journal of Biomechanics, 2004, 37(1):45-53.

[17]Liau JJ, Cheng CK, Huang CH, et al. The effect of malalignment on stresses in polyethylene component of total knee prostheses-a finite element analysis[J]. Clinical Biomechanics, 2002, 17: 140-146.

[18]Halloran JP , Petrella AJ , Rullkoetter PJ. Explicit finite element modeling of total knee replacement mechanics[J]. Journal of Biomechanics, 2005, 38(2):323-331.

[19]趙峰, 王川, 樊瑜波. 全膝關(guān)節(jié)置換術(shù)中聚乙烯襯墊的磨損測評研究進展[J]. 中國醫(yī)療器械雜志, 2015,39 (1):33-36.

Zhao F, Wang C, Fan YB. Research Progress of Polyethylene Inserts Wear Measurement and Evaluation in Total Knee Arthroplasty[J]. Chinese Journal of Medical Instrumentation,2015, 39(1):33-36.

[20] 王海羽, 王挺. 有限元法分析全膝關(guān)節(jié)置換對脛骨近端骨重建的影響[J]. 中國組織工程研究, 2016, 20(35):5180-5186.

Wang HY, Wang T. Effects of total knee arthroplasty on proximal tibial reconstruction using finite element analysis[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(35):5180-5186.

[21]Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005-2030[J]. The Journal of Bone and Joint Surgery (American), 2007, 89:780–785.

[22]Haller JM, Kubiak EN, Spiguel A, et al. Intramedullary nailing of tibial shaft fractures distal to total knee arthroplasty[J]. Journal of  Orthopaedic Trauma, 2014, 28(12):e296.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]