[1]Zhang XZ, Wang QF, Zhao ZY, et al. Therapeutic effect of Isobar TTL fixation system on lumbar degenerative disease and discussion on postoperative fusion rate[J]. Zhongguo Gu Shang,2019,32(10):914-918.
[2]Gandhi A, Ferry C, Inzana JA,?et al. Adjustable rigid interspinous process fixation: a biomechanical study of segmental lordosis and interbody loading in the lumbar spine[J]. Cureus,2019,11(3):e4317.
[3]?nen MR, Ba?gül C, Y?lmaz ?, et al. Comparison of rigid and semi-rigid instrumentation under acute load on vertebrae treated with posterior lumbar interbody fusion/transforaminal lumbar interbody fusion procedures: an experimental study[J]. Proceedings?of?the?Institution?of?Mechanical?Engineers,?Part?H: Journal of Engineering in Medicin,2018,232(4):388-394.
[4]Qian J, Bao Z, Li X, et al. Short-term therapeutic efficacy of the isobar TTL dynamic internal fixation system for the treatment of lumbar degenerative disc diseases[J]. Pain Physician,2016,19(6):E853- E861.
[5]Botelho RV, Bastianello R Jr, Albuquerque LD, et al. Dynamic compared to rigid fixation in lumbar spine: a systematic review[J]. Revista da Associacao Medica Brasileira,2014,60(2):151-155.
[6]?Chamoli U, Korkusuz MH, Sabnis AB,?et al. Global and segmental kinematic changes following sequential resection of posterior osteoligamentous structures in the lumbar spine: an in vitro?biomechanical investigation using pure moment testing protocols[J]. Proceedings?of?the?Institution?of?Mechanical?Engineers,?Part?H: Journal of Engineering in Medicin,2015,229(11):812-821.
[7]Panjabi M, Malcolmson G, Teng E, et al. Hybrid testing of lumbar CHARITE discs versus fusions[J]. Spine ,2007,32(9):959-967.
[8]Fujimoto M, Suzuki S, Kuki H, et al. Major patterns of plantar flexion resistive torque during the gait cycle in healthy young adults wearing ankle foot orthoses with a plantar flexion stop: a pilot study[J]. Journal?of?Physical?Therapy?Science,2019,31(7):504-507.
[9]Wilke HJ, Herkommer A, Werner K, et al. In vitro analysis of the segmental flexibility of the thoracic spine[J]. Plos?One,2017,12(5):e0177823.
[10] Little JS, Ianuzzi A, Chiu JB, et al. Human lumbar facet joint capsule strains: II. Alteration of strains subsequent to anterior interbody fixation[J]. Spine ,2004,4(2):153-162.
[11]Panagiotopoulou O. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology[J]. Human?BiologyAnnals?of?Human?Biology,2009,36(5):609-623.
[12] Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro?study[J]. European?Spine?Journal,2006,15(6):913-922.
[13] Beastall J, Karadimas E, Siddiqui M, et al. The dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings[J]. Spine,2007,32(6):685-690.
[14] Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? [J]. Journal of Biomechanics,2009,42(1):48-54.
[15] Schulte TL, Hurschler C, Haversath M et al. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression[J]. European?Spine?Journal,2008,17(8):1057-1065.
?
|