51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
新型腰椎后路動(dòng)態(tài)內(nèi)固定的生物力學(xué)評價(jià)及其對鄰近節(jié)段的影響

Biomechanical evaluation of the posterior dynamic internal fixation of the lumbar spine and its effects on adjacent segments

作者: 蔣帥  劉洋  陳元元  馮勇  袁文 
單位:海軍軍醫(yī)大學(xué)第三附屬醫(yī)院骨科(上海 200438) 海軍軍醫(yī)大學(xué)第二附屬醫(yī)院脊柱外科(上海 200003) 微創(chuàng)醫(yī)療器械(上海)有限公司(上海 201203)
關(guān)鍵詞: 腰椎;  動(dòng)態(tài)系統(tǒng);  生物力學(xué);  內(nèi)固定;  運(yùn)動(dòng)范圍;  中性區(qū) 
分類號(hào):R318.01
出版年·卷·期(頁碼):2021·40·3(295-302)
摘要:

目的 應(yīng)用新鮮人體標(biāo)本,對新型腰椎后路動(dòng)態(tài)內(nèi)固定進(jìn)行體外生物力學(xué)試驗(yàn),進(jìn)一步明確動(dòng)態(tài)內(nèi)固定對受試節(jié)段及鄰近節(jié)段的活動(dòng)度影響,最終為臨床應(yīng)用動(dòng)態(tài)內(nèi)固定治療腰椎退行性疾病提供參考提供。方法 選用6具腰椎尸體標(biāo)本,固定于脊柱生物力學(xué)試驗(yàn)機(jī)上,測試的狀態(tài)依次為完整腰椎狀態(tài)、失穩(wěn)腰椎狀態(tài)、動(dòng)態(tài)內(nèi)固定狀態(tài)及堅(jiān)強(qiáng)內(nèi)固定狀態(tài),分別在前(后)屈、左(右)側(cè)彎和左(右)旋轉(zhuǎn)3個(gè)運(yùn)動(dòng)平面上施加7.5 N·m的力矩,計(jì)算并比較腰3-腰4、腰4-腰5、腰5-骶1之間3個(gè)運(yùn)動(dòng)平面的脊柱運(yùn)動(dòng)范圍(range?of?motion,ROM)及中性區(qū)(neutral zone, NZ)。結(jié)果 在所有的3個(gè)運(yùn)動(dòng)平面上(側(cè)彎、屈/伸、軸向旋轉(zhuǎn)),與完整腰椎狀態(tài)對比,失穩(wěn)腰椎狀態(tài)增加了ROM和NZ (P<0.05)。堅(jiān)強(qiáng)內(nèi)固定和動(dòng)態(tài)內(nèi)固定狀態(tài)均使側(cè)彎和屈曲ROM和NZ較正常腰椎減少1個(gè)數(shù)量級(P<0.05),屈/伸時(shí),堅(jiān)強(qiáng)內(nèi)固定組ROM和NZ明顯減小(P<0.05),動(dòng)態(tài)固定組的ROM和NZ較完整腰椎狀態(tài)無明顯改變(P>0.05)。軸向左右旋轉(zhuǎn)時(shí),堅(jiān)強(qiáng)內(nèi)固定狀態(tài)ROM和NZ明顯減小,動(dòng)態(tài)內(nèi)固定狀態(tài)ROM則較正常腰椎狀態(tài)有所增大,但差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。腰3-腰4及腰5-骶1鄰近節(jié)段的3個(gè)運(yùn)動(dòng)平面上(側(cè)彎、屈/伸、軸向旋轉(zhuǎn))的ROM和NZ均未明顯受到固定節(jié)段的影響(P>0.05)。結(jié)論 相對堅(jiān)強(qiáng)內(nèi)固定,動(dòng)態(tài)內(nèi)固定能夠穩(wěn)定失穩(wěn)的脊柱節(jié)段,允許更多的節(jié)段活動(dòng),可考慮將動(dòng)態(tài)內(nèi)固定作為堅(jiān)強(qiáng)內(nèi)固定的替代治療方法。

Objective To use fresh human specimens to conduct biomechanical experiments on the new type of posterior dynamic internal fixation of the lumbar spine in vitro, to further clarify the procedure for dynamic internal fixation on the mobility of the tested segment and adjacent segments and provide reference for the clinical application of dynamic internal fixation in the treatment of lumbar degenerative diseases. Methods Six lumbar cadaver specimens were selected and fixed on the spine biomechanics testing machine. The tested states were intact lumbar spine state, unstable lumbar spine state, dynamic internal fixation state and rigid internal fixation state, respectively in front (rear) flexion and left (right) ?lateral bending and left (right) rotation exert a torque of 7.5 N·m on the 3 motion planes. The spine motions of the 3 motion like range of motion (ROM) and neutral zone (NZ) between L3- L4, L4- L5 and L5-S1. Results In all 3 motion planes (?lateral bending, flexion/extension and axial rotation), compared with the intact lumbar spine, the unstable lumbar spine increased ROM and NZ(P<0.05). Both rigid internal fixation and dynamic internal fixation reduced ?lateral ending and flexion ROM and NZ by an order of magnitude compared with normal lumbar spine(P<0.05). During flexion/extension, ROM and NZ of the rigid internal fixation group were significantly reduced(P<0.05) , ROM and NZ of the dynamic fixation group were not significantly changed compared with the intact lumbar spine state (P>0.05). When the axis rotates left and right, the ROM and NZ of the rigid internal fixation state are significantly reduced, and the ROM of the dynamic internal fixation state is increased compared with the normal lumbar state, but the difference is not statistically significant (P>0.05). The ROM and NZ on the 3 motion planes of the adjacent segments of L3- L 4 and L 5-S1 were not significantly affected by the fixed segment(P>0.05). Conclusions Compared with the internal fixation, the dynamic internal fixation can stabilize the unstable spinal segment and allow more segmental mobility. Dynamic internal fixation might be considered as an alternative treatment for rigid internal fixation.

參考文獻(xiàn):

[1]Zhang XZ, Wang QF, Zhao ZY, et al. Therapeutic effect of Isobar TTL fixation system on lumbar degenerative disease and discussion on postoperative fusion rate[J]. Zhongguo Gu Shang,2019,32(10):914-918.

[2]Gandhi A, Ferry C, Inzana JA,?et al. Adjustable rigid interspinous process fixation: a biomechanical study of segmental lordosis and interbody loading in the lumbar spine[J]. Cureus,2019,11(3):e4317.

[3]?nen MR, Ba?gül C, Y?lmaz ?, et al. Comparison of rigid and semi-rigid instrumentation under acute load on vertebrae treated with posterior lumbar interbody fusion/transforaminal lumbar interbody fusion procedures: an experimental study[J]. Proceedings?of?the?Institution?of?Mechanical?Engineers,?Part?H: Journal of Engineering in Medicin,2018,232(4):388-394.

[4]Qian J, Bao Z, Li X, et al. Short-term therapeutic efficacy of the isobar TTL dynamic internal fixation system for the treatment of lumbar degenerative disc diseases[J]. Pain Physician,2016,19(6):E853- E861.

[5]Botelho RV, Bastianello R Jr, Albuquerque LD, et al. Dynamic compared to rigid fixation in lumbar spine: a systematic review[J]. Revista da Associacao Medica Brasileira,2014,60(2):151-155.

[6]?Chamoli U, Korkusuz MH, Sabnis AB,?et al. Global and segmental kinematic changes following sequential resection of posterior osteoligamentous structures in the lumbar spine: an in vitro?biomechanical investigation using pure moment testing protocols[J]. Proceedings?of?the?Institution?of?Mechanical?Engineers,?Part?H: Journal of Engineering in Medicin,2015,229(11):812-821.

[7]Panjabi M, Malcolmson G, Teng E, et al. Hybrid testing of lumbar CHARITE discs versus fusions[J]. Spine ,2007,32(9):959-967.

[8]Fujimoto M, Suzuki S, Kuki H, et al. Major patterns of plantar flexion resistive torque during the gait cycle in healthy young adults wearing ankle foot orthoses with a plantar flexion stop: a pilot study[J]. Journal?of?Physical?Therapy?Science,2019,31(7):504-507.

[9]Wilke HJ, Herkommer A, Werner K, et al. In vitro analysis of the segmental flexibility of the thoracic spine[J]. Plos?One,2017,12(5):e0177823.

[10] Little JS, Ianuzzi A, Chiu JB, et al. Human lumbar facet joint capsule strains: II. Alteration of strains subsequent to anterior interbody fixation[J]. Spine ,2004,4(2):153-162.

[11]Panagiotopoulou O. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology[J]. Human?BiologyAnnals?of?Human?Biology,2009,36(5):609-623.

[12] Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro?study[J]. European?Spine?Journal,2006,15(6):913-922.

[13] Beastall J, Karadimas E, Siddiqui M, et al. The dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings[J]. Spine,2007,32(6):685-690.

[14] Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? [J]. Journal of Biomechanics,2009,42(1):48-54.

[15] Schulte TL, Hurschler C, Haversath M et al. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression[J]. European?Spine?Journal,2008,17(8):1057-1065.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]