51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
咬合動作相關(guān)肌電對穩(wěn)態(tài)視覺誘發(fā)電位的典型頻率影響

Effects of jaw clench actions on steady-state visual evoked potential at some typical frequencies

作者: 張志敏  王盛  關(guān)凱  劉濤  牛海軍  
單位:北京航空航天大學(xué)生物與醫(yī)學(xué)工程學(xué)院(北京 100083),上海航空電器有限公司(上海 201101) 通訊作者:牛海軍,教授,博士研究生導(dǎo)師,E-mail: [email protected]
關(guān)鍵詞: 腦-機(jī)接口;腦電信號;肌電信號;信號干擾抑制;生理信號處理 
分類號:R318.04
出版年·卷·期(頁碼):2021·40·4(331-336)
摘要:

目的 基于穩(wěn)態(tài)視覺誘發(fā)電位(steady-state visual evoked potential ,SSVEP)和肌電(EMG)的組合是廣泛使用的混合BCI模式。而對于那些只能控制面部肌肉的使用者,咬合動作相關(guān)面部肌電通常與SSVEP結(jié)合使用。本研究探討了下頜咬合相關(guān)肌電對枕部電極采集到的SSVEP的干擾情況,進(jìn)而尋找即使在咬合動作下也可同時進(jìn)行SSVEP識別的刺激頻率。方法 根據(jù)咬合類型,實驗分為三個模式組(無咬合、短咬和長咬合)。在每組模式中,受試者同時注視3個閃爍在6.2Hz、9.8Hz和14.6Hz 視覺刺激目標(biāo)。收集枕區(qū)4個位點的SSVEP后觀察了在3種咬合模式下,各個閃爍刺激的SSVEP響應(yīng)頻譜,并利用典型相關(guān)分析方法識別了SSVEP信號,最后統(tǒng)計了準(zhǔn)確率。結(jié)果 當(dāng)刺激頻率低于20Hz時,即使有以上2種咬合動作,仍然可以避免其對SSVEP的干擾。根據(jù)這些信號的頻域特征依然可以識別SSVEP。另外,在咬合動作下進(jìn)行穩(wěn)態(tài)視覺刺激時,SSVEP的識別率仍然很高(無咬合動作:100.0%,短咬:94.7%,長時間咬合:100.0%)。結(jié)論 通過合理的頻率選擇和信號處理,即便下頜咬合動作和SSVEP刺激同時發(fā)生時,仍可將咬合動作對穩(wěn)態(tài)視覺誘發(fā)電位的影響降低,而且達(dá)到較高的識別準(zhǔn)確率。

Objective Combinations based on steady-state visual evoked potential (SSVEP) and electromyography (EMG) are the widely used hybrid BCIs. For users who are suffering from severe motor impairments and could only control muscles above their necks, the EMG of jaw clench is commonly used together with SSVEP. This article explored the interference with SSVEP from occipital electrodes by the jaw clench-related EMG so that SSVEP with specific frequency can be identified even during occlusal movements. Methods The experiment was divided into three sets base on the jaw clench patterns (no clenches, chew, and long clench). In each set, the subjects used the same visual stimuli, which were realized by the three flashing targets at different frequencies (6.2Hz, 9.8Hz, and 14.6Hz). After collecting the SSVEP at 4 sites in the occipital region, the SSVEP response spectrum of each stimulus was observed under the three jaw clench patterns. Then, the SSVEP signal was identified by the canonical correlation analysis method for accuracy statistics. Results Spectrum responses showed that the interference of the jaw clench EMG on SSVEP could be avoided when the stimulation frequency is lower than 20Hz. SSVEP could be identified based on the frequency domain characteristics of these signals. During steady-state visual stimulation with jaw clenches, the recognition rate of SSVEP was still high (no clenches: 100.0%, chew: 94.7%, and long clench: 100.0%). Conclusions Through reasonable frequency selecting and signal processing, the influence of the jaw clench movement on the SSVEP could be reduced and a high recognition accuracy could be achieved, even the jaw clench actions and the SSVEP stimulation occur simultaneously.

參考文獻(xiàn):

[1]Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173.

[2]Hong KS, Khan MJ. Hybrid brain-computer interface techniques for improved classification accuracy and increased number of commands: a review[J]. Frontiers in Neurorobotics, 2017, 11:35.

[3] Edlinger G, Holzner C, Guger C, et al. A hybrid brain-computer interface for smart home control [C]// International Conference on Human-Computer Interaction 2011, Interaction Techniques and Environments. Switzerland: Springer, Berlin, Heidelberg, 2011,6762: 417-426.

[4]Pfurtscheller G, Solis-Escalante T, Ortner R, et al. Self-paced operation of an SSVEP-based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(4): 409-414.

[5] Allison BZ, Brunner C, Altst?tter C, et al. A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control[J]. Journal of Neuroscience Methods, 2012, 209(2): 299-307. .

[6] Scherer R, Müeller-Putz GR, Pfurtscheller G. Self-initiation of EEG-based brain-computer communication using the heart rate response[J]. Journal of Neural Engineering, 2007, 4(4): L23-L29.

[7]Shinde N, George K. Brain-controlled driving aid for electric wheelchairs[C]// 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN). San Francisco, CA, USA:IEEE Press, 2016: 115-118.

[8] Chai?XK,??Zhang?ZM,??Guan?K,?et?al.?? A?hybrid?BCI-controlled?smart?home?system?combining?SSVEP?and?EMG?for?individuals?with?paralysis[J].?Biomedical?Signal?Processing?and?Control,?2020,?56(2): 101687.

[9] Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(6): 590-598.

[10] Shyu K, Chiu YJ, Lee PL, et al. Total design of an FPGA-based brain-computer interface control hospital bed nursing system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2731-2739.

[11] Lin K, Cinetto A, Wang Y, et al. An online hybrid BCI system based on SSVEP and EMG[J]. Journal of Neural Engineering, 2016 13(2): 026020.

[12]Gao Q, Dou L, Belkacem AN, et al. Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system[J]. BioMed Research International, 2017, 2017: 8316485.

[13] 路陽婷,柴曉珂,張志敏,等. 結(jié)合顳肌肌電的虛擬家居控制系統(tǒng)設(shè)計與驗證[J].北京生物醫(yī)學(xué)工程,2018,37(4): 387-391.

Lu YT, Chai XK, Zhang ZM, et al. Design and verification of virtual home control system with EMG of temporal muscle[J]. Beijing Biomedical Engineering, 2018,37(4): 387-391.

[14] Goncharova II, McFarland DJ, Vaughan TM, et al. EMG contamination of EEG: spectral and topographical characteristics[J]. Clinical Neurophysiology, 2003,114(9): 1580–1593.

[15] Chen XG, Chen ZK, Gao SK, et al. A high-ITR SSVEP-based BCI speller[J]. Brain-Computer Interfaces, 2014,1(3-4): 181-191.

[16]Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(6 Pt 2): 1172-1176.

[17]Shah MA, Sheikh AA, Sajjad AM, et al. A hybrid training-less brain-machine interface using SSVEP and EMG signal[C]// 2015 13th International Conference on Frontiers of Information Technology. Islamabad, Pakistan:IEEE Computer Society, 2015: 93-97.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]