[1]孫曉敏, 徐萍, 馬志紅,等. 上海松江地區(qū)膽囊良性疾病的流行病學(xué)調(diào)查30901例[J]. 世界華人消化雜志, 2011, 19(27):2881-2885.
??? Sun XM, Xu P, Ma ZH, et al. An epidemiological survey of benign gallbladder disease in Songjiang District of Shanghai, China[J]. World Chinese Journal of Digestology, 2011, 019(027):2881-2885.
[2] 朱忠偉,李福軍,胡柯銘,等.寧波鎮(zhèn)海地區(qū)膽囊疾病的流行病學(xué)調(diào)查[J].現(xiàn)代實(shí)用醫(yī)學(xué),2012,24(11):1241-1242.
[3] 趙登秋, 張建淮, 王衛(wèi)東. 江蘇淮安地區(qū)膽囊疾病的流行病學(xué)調(diào)查[J]. 消化外科, 2004, 3(1):39-40.
??? Zhao DQ, Zhang JH, Wang WD, et al. An epidemic survey of gallbladder disease in Huaian district of Jiangshu Province[J]. Journal of Digestive Surgery, 2004, 3(1):39-40.
[4] ?Li ML, Zhang Z, Li XG, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nature Genetics, 2014, 46(8):872-876.
[5] Naser MA, Deen MJ. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images[J]. Computers in Biology and Medicine, 2020, 121:103758.
[6] Hu HF, Pan N, Wang JY, et al. Automatic segmentation of left ventricle from cardiac MRI via deep learning and region constrained dynamic programming[J]. Neurocomputing, 2019, 347: 139-148.
[7] Almotairi S, Kareem G, Aouf M, et al. Liver tumor segmentation in CT scans using modified SegNet[J]. Sensors, 2020, 20(5):1516.
[8] 譚丹滟. 腹部CT影像中膽囊分割系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D].武漢:華中科技大學(xué), 2017.
??? Tan DY. Design and implementation of gallbladder segmentation system in abdominal CT images[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[9] 段雪琦. 腹部CT影像中的膽管分割方法研究[D].武漢:華中科技大學(xué), 2017.
??? Duan XQ. A research on bile duct segmentation in abdominal CT images[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[10] Huang YF, Xu ZZ, Yan CR. Automatic gallbladder location and segmentation based on anatomical knowledge[J]. Applied Mechanics & Materials, 2014, 556-562:4697-4700.
[11] Lian J, Ma Y, Ma Y, et al. Automatic gallbladder and gallstone regions segmentation in ultrasound image[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(4):553-568.
[12] Li C, Tan Y, Chen W, et al. ANU-Net: attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11-20.
[13] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 014006.
[14] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]// International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Switzerland: ?Springer, Cham, 2015: 234-241.
[15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE Press, 2016: 770-778.
[16] 劉楊,朱斌, 何健,等. 意外膽囊癌的影像學(xué)特征及誤漏診分析[J]. 中國醫(yī)藥導(dǎo)報(bào),2020,17(1):161-164.
Liu Y, Zhu B, He J, et al. Analysis of imaging features of unsuspected gallbladder cancer and causes of misdiagnosis or missed diagnosis[J]. China Medical Herald,2020,17(1):161-164.
?
|