51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
寸口脈脈位與疾病狀態(tài)關(guān)聯(lián)性的血流動(dòng)力學(xué)建模分析

Hemodynamic modeling to study the association between pulse-taking depths and particular disease conditions in the pulse examination

作者: 史宇兵  楊曉航 
單位:陜西中醫(yī)藥大學(xué)整合醫(yī)學(xué)研究院(陜西咸陽(yáng)712046), 陜西中醫(yī)藥大學(xué)醫(yī)學(xué)技術(shù)學(xué)院(陜西咸陽(yáng)712046) <p>通信作者:史宇兵,教授。E-mail: [email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 脈位;橈動(dòng)脈;血流動(dòng)力學(xué);數(shù)學(xué)模型;頻率特性 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2021·40·4(385-392)
摘要:

目的 當(dāng)前關(guān)于脈診的血流動(dòng)力學(xué)建模研究集中于分析各種生理病理變化對(duì)脈象的影響,而忽略了切脈對(duì)橈動(dòng)脈血流的干預(yù)作用,所以無(wú)法從物理上解釋寸口脈與所主病癥的關(guān)系。本研究通過(guò)分析切脈對(duì)橈動(dòng)脈血流動(dòng)態(tài)的影響以探討寸口脈浮中沉脈位和所表征病癥的聯(lián)系。方法 本研究構(gòu)建了簡(jiǎn)單的橈動(dòng)脈血流動(dòng)力學(xué)模型,推導(dǎo)了血流特征量(包括寸口處的血流摩擦損失、橈動(dòng)脈血流動(dòng)態(tài)響應(yīng)的自然頻率和阻尼比等)隨切脈深度而變化的定量關(guān)系,以評(píng)估切脈對(duì)橈動(dòng)脈血流動(dòng)態(tài)的影響。結(jié)果 研究發(fā)現(xiàn)橈動(dòng)脈血流動(dòng)態(tài)響應(yīng)的自然頻率隨切脈深度的增加而增大但基本保持在之間。該變化范圍和正常人脈搏波的主要頻譜范圍高度重合,因此通過(guò)切脈至不同深度產(chǎn)生橈動(dòng)脈血流動(dòng)態(tài)響應(yīng)的頻率特性變化,可以與脈搏波頻譜中不同的頻率分量合拍共振,從而在寸口處捕捉到脈搏波中對(duì)應(yīng)于不同生理病理狀態(tài)的頻率成分。結(jié)論 本研究從切脈引起橈動(dòng)脈血流動(dòng)態(tài)響應(yīng)的自然頻率變化的角度,為寸口脈浮中沉脈位與不同病癥狀態(tài)的聯(lián)系提供了初步解釋。

Objective Current Sphygmography studies based on hemodynamic modelling focused much on the analysis of how the different pathophysiological conditions influence the pulse manifestation, while neglected the effect of the pulse-taking procedure on the radial blood flow, thus could not give a clear physical explanation to the relation between the pulse manifestation and the diseases characterized. This research aims to study the association between the pulse-taking depths and the different disease conditions they reflected through explicitly modeling the effect of the pulse-taking procedure on the radial flow dynamics. Methods This study developed a simple hemodynamic model of the radial flow, and derived equations to quantify the changes of hemodynamic variables (including the frictional loss at cunkou, the natural frequency and the damping ratio of the radial flow dynamics) under different pulse-taking depths, to evaluate the influence of the pulse-taking procedure on the radial flow response. Results Results showed that the natural frequency of the radial flow response increased with the increment of the pulse-taking depths, but it was generally maintained in the range of 5-10Hz. This range was highly overlapped with the range of the major frequency spectrum in the radial pulse wave in normal human subjects. Thus through pulse-taking at different pulse depths, there would be resonance produced between the induced natural frequency of the radial flow response and selected frequency bands in the pulse wave, which facilitated the manifestation of specific frequency components at cunkou corresponding to the different pathophysiological conditions. Conclusions This study gives a preliminary explanation to the association between the pulse-taking depths and the particular disease conditions, from the aspect of the change of the natural frequency in the radial blood flow induced by pulse-taking.

參考文獻(xiàn):

[1]?? 費(fèi)兆馥. 現(xiàn)代中醫(yī)脈診學(xué)[M]. 北京:人民衛(wèi)生出版社, 2003.

[2]?? 楊洪明, 楊紹戊. 脈理探邃[M]. 北京:中醫(yī)古籍出版社, 2007.

[3]?? 徐迪華, 徐劍秋, 徐麗敏. 中華脈診的奧秘[M]. 2版. 南京:江蘇科學(xué)技術(shù)出版社, 2009.

[4]?? 賈建義, 張揚(yáng)卿, 傅華洲. 寸口脈左右臟腑分屬關(guān)系的探討[J]. 中華中醫(yī)藥學(xué)刊, 2014, 32(4): 876–879.

Jia JY, Zhang YQ, Fu HZ. Discussion about relation between cunkou pulse and Zang-Fu [J]. Chinese Archives of Traditional Chinese Medicine, 2014, 32(4): 876–879.

[5]?? 徐瑋斐, 顧巍杰, 楊德才, 等. “寸口脈分候臟腑”理論的古代文獻(xiàn)探源[J]. 中華中醫(yī)藥學(xué)刊, 2016, 34(7): 1624–1626.

Xu WF, Gu WJ, Yang DC, et al. Ancient literature origin of cunkou pulse manifesting Zang-fu organs respectively [J]. Chinese Archives of Traditional Chinese Medicine, 2016, 34(7): 1624–1626.

[6]?? 邢玉瑞, 牛溪苑. 寸口脈臟腑配位推演方法研究[J]. 中醫(yī)雜志, 2013, 54(12): 991–993.

[7]?? de Sá Ferreira A, Lopes AJ. Pulse waveform analysis as a bridge between pulse examination in Chinese medicine and cardiology[J]. Chinese Journal of Integrative Medicine, 2013, 19(4): 307–314.

[8]?? 李燦新. 《難經(jīng)》脈之“輕重”“浮沉”的探討[J]. 福建中醫(yī)藥, 2003, 34(3): 38–39.

[9]?? 齊鳳軍, 程井軍. 左右關(guān)脈與脾肝內(nèi)在聯(lián)系的探討[J]. 中華中醫(yī)藥學(xué)刊, 2011, 29(1): 212–214.

Qi FJ, Cheng JJ. A Probe into the internal links between the left and right bar pulses and spleen-liver [J]. Chinese Archives of Traditional Chinese Medicine, 2011, 29(1): 212–214.

[10] 丘瑞香, 羅致強(qiáng), 朱雅宜, 等. 寸口脈分候臟腑理論的實(shí)驗(yàn)研究——正常人左右關(guān)脈與肝脾內(nèi)在聯(lián)系的探討[J]. 中醫(yī)藥研究, 1991(5): 26–28, 42.

Qiu RX, Luo ZQ, Zhu YY, et al. Experimental study on the theory of zang and fu according to pulse conditions of cun, guan and chi [J]. Research of Traditional Chinese Medicine, 1991(5): 26-28, 42.

[11] 朱俊奎. 寸口脈診臟腑定位的探討——針刺原穴前后寸口相關(guān)部位脈搏圖變化的觀察[J]. 遼寧中醫(yī)雜志, 1981(11): 17-20, 50.

[12] 嚴(yán)惠芳, 馬居里. 談“寸口脈分候臟腑”的臨床價(jià)值[J]. 陜西中醫(yī), 1988, 9(10): 452–453.

[13] 楊杰, 吳清, 夏春明, 等. 光電寸口六部脈諧波分解研究[J]. 中華中醫(yī)藥雜志, 2018, 33(3): 890–893.

Yang J, Qu Q, Xia CM, et al. Research on harmonic decomposition of photoelectric Cun-Kou six-pulse diagram [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2018, 33(03): 890–893.

[14] Tsai YN, Huang YC, Lin SJS, et al. Different harmonic characteristics were found at each location on TCM radial pulse diagnosis by spectrum analysis [J]. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, 2018: 9018271.

[15] Wei CC, Huang CM, Liao YT. The exponential decay characteristic of the spectral distribution of blood pressure wave in radial artery [J]. Computers in Biology and Medicine, 2009, 39(5): 453–459.

[16] Wang YYL, Wang SH, Jan MY, et al. Past, present, and future of the pulse examination (mài zhěn) [J]. Journal of Traditional and Complementary Medicine, 2012, 2(3): 164–185.

[17] Jeon YJ, Kim JU, Lee HJ, et al. A clinical study of the pulse wave characteristics at the three pulse diagnosis positions of Chon, Gwan and Cheok [J]. Evidence-Based Complementary and Alternative Medicine: eCAM, 2011, 2011: 904056.

[18] 徐克, 趙良舉, 李明陽(yáng). 基于流體網(wǎng)絡(luò)的人體血液體循環(huán)分析[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào), 2017, 36(5): 580–588.

Xu K, Zhao LJ, Li MY. The analysis of the systemic circulation of human blood based on fluid network [J]. Chinese Journal of Biomedical Engineering, 2017, 36(5): 580–588.

[19] 王學(xué)民, 楊成, 陸小左, 等. 基于中醫(yī)脈象的橈動(dòng)脈血管模型的建立[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版), 2013, 46(6): 487–492.

Wang XM, Yang C, Lu XZ, et al. Model of radial artery based on human pulse [J]. Journal of Tianjin University (Science and Technology), 2013, 46(6): 487–492.

[20]? 白凈, 吳冬生. 橈動(dòng)脈脈搏波的仿真模型[J]. 航天醫(yī)學(xué)與醫(yī)學(xué)工程, 1995, 8(2): 94–98.

Bai J, Wu DS. A simulation model of pulse wave in radial artery[J]. Space Medicine & Medical Engineering, 1995, 8(2): 94–98.

[21]? 白凈, 吳冬生, 張菊鵬, 等. 脈搏波與生理病理變化關(guān)系的仿真研究[J]. 航天醫(yī)學(xué)與醫(yī)學(xué)工程, 1996, 9(1): 32–36.

Bai J, Wu DS, Zhang JP, et al. A simulation study of the relationship between pulse wave and physiological and pathological status of human body[J]. Space Medicine & Medical Engineering, 1996, 9(1): 32–36.

[22] 鄧原成, 王新. 脈象圖的參數(shù)模型及其應(yīng)用研究[J]. 北京生物醫(yī)學(xué)工程, 1994, 13(1): 1–9.

Deng YC, Wang X. Study of a parameter model for sphygmogram and its application [J]. Beijing Biomedical Engineering, 1994, 13(1): 1–9.

[23] 龔安特, 顏文明, 李冰星. 試論中醫(yī)脈象浮沉的力學(xué)內(nèi)涵[J]. 遼寧中醫(yī)雜志, 1986(1): 11-13, 47.

[24] 蔡肖, 趙良舉, 周正剛, 等. 基于傳輸線模型的人體脈搏波仿真分析[J]. 重慶大學(xué)學(xué)報(bào), 2019, 42(7): 27–35.

Cai X, Zhao LJ, Zhou ZG, et al. Human pulse wave simulation analysis based on transmission line model [J]. Journal of Chongqing University, 2019, 42(7): 27–35.

[25] 袁凡, 吳望一. 脈象的血管位移波理論[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 1989, 10(6): 469–475.

Yuan F, Wu WY. The displacement wave theory of blood vessel [J]. Applied Mathematics and Mechanics, 1989, 10(6): 469–475.

[26] 吳望一, 袁凡. 血管的位移波——脈象新釋[J]. 力學(xué)學(xué)報(bào), 1985, 17(3): 237–242.

Wu WY, Yuan F. The displacement wave of the blood vessel—a new explanation of the pulse condition [J]. Acta Mechanica Sinica, 1985, 17(3): 237–242.

[27] 吳望一, 樊渝波, 是長(zhǎng)春. 切脈的數(shù)學(xué)模擬[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版), 1989, 25(1): 66–74.

Wu WY, Fan YB, Shi CC. The mathematical simulation of the pulse feeling [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1989, 25(1): 66–74.

[28] Guyton AC, Hall JE. Textbook of medical physiology [M]. 11th ed. Philadelphia, Pa: Saunders, 2005.

[29] Shi Y, Lawford P, Hose R. Review of zero-D and 1-D models of blood flow in the cardiovascular system [J]. Biomedical Engineering Online, 2011, 10: 33.

[30] Alastruey J. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis [J]. Cardiovascular Engineering, 2010, 10(4): 176–189.

[31] Quarteroni A, Veneziani A, Vergara C. Geometric multiscale modeling of the cardiovascular system, between theory and practice [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 302: 193–252.

[32] Wang JJ, Parker KH. Wave propagation in a model of the arterial circulation [J]. Journal of Biomechanics, 2004, 37(4): 457–470.

[33] Reymond P, Merenda F, Perren F, et al. Validation of a one-dimensional model of the systemic arterial tree [J]. American Journal of Physiology. Heart and Circulatory Physiology, 2009, 297(1): H208-H222.

[34] Reymond P, Bohraus Y, Perren F, et al. Validation of a patient-specific one-dimensional model of the systemic arterial tree [J]. American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, 2011, 301(3): H1173–H1182.

[35] Alastruey J, Khir AW, Matthys KS, et al. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements [J]. Journal of Biomechanics, 2011, 44(12): 2250–2258.

[36] 張永會(huì), 高長(zhǎng)青, 王嶸. 脈搏波分析方法及其應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(3): 319–326.

Zhang YH, Gao CQ, Wang R. Methods of pulse wave analysis and its application [J]. Beijing Biomedical Engineering, 2019, 38(3): 319–326.

[37] 王炳和, 楊颙,相敬林. 脈搏聲信號(hào)檢測(cè)系統(tǒng)實(shí)驗(yàn)設(shè)計(jì)及功率譜特征[J]. 中華物理醫(yī)學(xué)雜志, 1998, 20(3): 158–161.

Wang BH, Yang Y, Xiang JL. Experiment design and power-spectral characteristics of pulse signals [J]. Chinese Journal of Physical Medicine, 1998, 20(3): 158–161.

[38] 王炳和,相敬林. 脈搏系統(tǒng)建模與脈象信息分析的研究進(jìn)展[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2002, 19(2): 329–333.

Wang BH, Xiang JL. The progress in research for human pulse system modeling and pulse condition information analysis [J]. Journal of Biomedical Engineering, 2002, 19(2): 329–333.

[39] 姜斌, 宋蜇存. 脈象信號(hào)的頻譜分析[J]. 自動(dòng)化技術(shù)與應(yīng)用, 2007, 26(8): 38-39, 33.

Jiang B, Song ZC. Spectral analysis of pulse signals [J]. Techniques of Automation and Applications, 2007, 26(8): 38-39, 33.

[40] 乜國(guó)荃, 方祖祥. 人體脈搏的測(cè)量與分析[J]. 上海生物醫(yī)學(xué)工程, 2006, 27(2): 74–76.

Nie GQ, Fang ZX. Measurement and analysis of human pulse [J]. Shanghai Journal of Biomedical Engineering, 2006, 27(2): 74–76.

[41] 馮晨星, 楊穎, 徐國(guó)卿. 脈搏波頻域分析中共振理論的研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(1): 102–107, 108.

Feng CX, Yang Y, Xu GQ. Research progress of resonance theory in frequency domain analysis of pulse wave [J]. Beijing Biomedical Engineering, 2019, 38(1): 102–107, 108.

[42] 張鏡人, 楊天權(quán), 鄭秀春, 等. 正常人脈象圖頻域指標(biāo)分析[J]. 遼寧中醫(yī)雜志, 1995, 22(10): 435–436.

[43] 張修誠(chéng), 王唯工, 陳榮洲, 等. 脈搏諧波頻譜分析──中醫(yī)脈診研究新方法[J]. 中國(guó)中西醫(yī)結(jié)合雜志, 1995, 15(12): 743–745.

[44] 周霞, 蔡坤寶. 中醫(yī)脈象信號(hào)的短時(shí)傅里葉分析[J]. 重慶大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 26(10): 47–51.

Zhou X, Cai KB. STFT analysis of pulse signals [J]. Journal of Chongqing University(Natural Science Edition), 2003, 26(10): 47–51.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]