51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
人體日常健康管理可穿戴設(shè)備研究進(jìn)展

Research progress of wearable devices in human daily health management

作者: 李安安  石萍  
單位:上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海 200093) <p>通信作者:石萍,副教授,碩士研究生導(dǎo)師。E-mail: [email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 可穿戴設(shè)備;生理信號(hào);算法;傳感器;健康管理 
分類號(hào):R318.6
出版年·卷·期(頁(yè)碼):2021·40·4(430-436)
摘要:

隨著互聯(lián)網(wǎng)技術(shù)的發(fā)展,大眾對(duì)便攜地獲得個(gè)體健康信息的需求不斷擴(kuò)大。可穿戴設(shè)備不僅被廣泛地應(yīng)用于臨床,還由于其智能化、微型化、便攜化等特點(diǎn),被逐漸應(yīng)用到普通家庭的日常健康管理中但不同的可穿戴設(shè)備在人體日常健康管理中的具體應(yīng)用尚不清楚。本文通過(guò)PubMed及CNKI數(shù)據(jù)庫(kù)對(duì)可穿戴設(shè)備的文獻(xiàn)進(jìn)行了搜索,依據(jù)可穿戴設(shè)備實(shí)現(xiàn)的不同功能對(duì)其進(jìn)行了分類,簡(jiǎn)述了其應(yīng)用的算法及具體分析方法,并對(duì)其在人體健康領(lǐng)域的未來(lái)發(fā)展趨勢(shì)做出了展望。

With the development of Internet technology, the demand for portable access to health information is expanding. Wearable devices are not only widely used in clinical research, but also gradually used in the daily health management of ordinary groups due to its intelligent, miniaturized and portable features. However, the specific application of different wearable devices in human daily health management is not clear. In this paper, the research of wearable devices is searched through PubMed and CNKI databases. According to the different functions of wearable devices, it is classified, and the application algorithm and specific analysis methods are briefly described. Finally, the future development trend of wearable devices in human health management is prospected.

 

參考文獻(xiàn):

[1]????? Jalloul N, Poree F, Viardot G, et al. Activity recognition using complex network analysis [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 989-1000.

[2]????? Ahola TM. Pedometer for running activity using accelerometer sensors on the wrist [J]. Medical Equipment Insights, 2010(3): 1-8.

[3]????? Gaglani S, Moore J, Haynes MR, et al. Using commercial activity monitors to measure gait in patients with suspected iNPH: implications for ambulatory monitoring [J]. Cureus, 2015, 7(11): e382.

[4]????? Winfree KN, Dominick G. Modeling clinically validated physical activity assessments using commodity hardware [C]// 2017 IEEE EMBS International Conference on ?Biomedical and Health Informatics, Olando, FL: IEEE Press, 2017: 157-160.

[5]????? 陶瑞媛, 張春華. 人工智能時(shí)代下健身類APP計(jì)步功能的效度研究[C]//第十一屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編.南京:中國(guó)體育科學(xué)學(xué)會(huì), 2019: 5468-5470.

[6]????? Toth LP, Park S, Springer CM, et al. Video-recorded validation of wearable step counters under free-living conditions [J]. Medicine and Science in Sports and Exercise, 2018, 50(6): 1315-1322.

[7]????? Bassett DR, Toth LP, LaMunion SR, et al. Step counting: a review of measurement considerations and health-related applications [J]. Sports Medicine, 2017, 47(7): 1303-1315.

[8]????? EI-Arawy F, Nounou MI. Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? [J]. Healthcare Informatics Research, 2015, 21(4): 315-320.

[9]????? Pande A, Zhu J, Das AK, et al. Using smartphone sensors for improving energy expenditure estimation [J]. IEEE Journal of Translational Engineering in Health and Medicine, 2015, 3: 2700212.

[10]??? Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort [J]. Journal of Personalized Medicine, 2017, 7(2): 3.

[11]??? Roos L, Taube W, Beeler N, et al. Validity of sports watches when estimating energy expenditure during running [J]. BMC Sports Science, Medicine and Rehabilitation, 2017, 9(1):22.

[12]??? Ryu JS, Park JJ. Validation of wearable devices to measure energy consumption [J]. The Asian Journal of Kinesiology, 2020, 22(1): 33-37.

[13]??? Guo YN, Tao DP, Liu WF, et al. Multiview cauchy estimator feature embedding for depth and inertial sensor-based human action recognition [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(4): 617-627.

[14]??? Mooney R, Qunilan LR, Corley G, et al. Evaluation of the Finis Swimsense (R) and the Garmin Swim (TM) activity monitors for swimming performance and stroke kinematics analysis[J]. PloS One, 2017, 12(2): e0170902.

[15]??? Kanoga S, Kanemura A, Asoh H. Are armband sEMG devices dense enough for long-term use? —Sensor placement shifts cause significant reduction in recognition accuracy [J]. Biomedical Signal Processing and Control, 2020, 60:101981.

[16]??? Gualtieri L, Rosenbluth S, Phillips J. Can a free wearable activity tracker change behavior? The impact of trackers on adults in a physician-led wellness group[J]. JMIR Research Protocols, 2016, 5(4): e237.

[17]??? Belmonte-Fernandez O, Puertas-Cabedo A, Torres-Sospedra J, et al. An indoor positioning system based on wearables for ambient-assisted living [J]. Sensors, 2017, 17(1):36.

[18]??? Wu YC, Qi SF, Hu F, et al. Recognizing activities of the elderly using wearable sensors: a comparison of ensemble algorithms based on boosting [J]. Sensor Review, 2019, 39(6): 743-751.

[19]??? AI-khafajiy M, Baker T, Chalmers C, et al. Remote health monitoring of elderly through wearable sensors [J]. Multimedia Tools and Applications, 2019, 78(17): 24681-24706.

[20]??? De Brouwer M, Ongenae F, Bonte P, et al. Towards a cascading reasoning framework to support responsive ambient-intelligent healthcare interventions [J]. Sensors, 2018, 18(10):3514.

[21]??? Jovanov E. Wearables meet IoT: synergistic personal area networks (SPANs) [J]. Sensors, 2019, 19(19): 4295.

[22]??? Voss C, Schwartz J, Daniels J, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder a randomized clinical trial [J]. JAMA Pediatrics, 2019, 173(5): 446-454.

[23]??? de Zambotti M, Cellini N, Goldstone A, et al. Wearable sleep technology in clinical and research settings [J]. Medicine and Science in Sports and Exercise, 2019, 51(7): 1538-1557.

[24]??? Gautam A, Naik VS, Gupta A, et al. An smartphone-based algorithm to measure and model quantity of sleep[C]// 2015 7th International Conference on Communication Systems and Networks. ?Bangalore, India: IEEE Press, 2015: 1-6.

[25]??? Meltzer LJ, Hiruma LS, Avis K, et al. Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents [J]. Sleep, 2015, 38(8): 1323-1330.

[26]??? Xie JQ, Wen D, Liang LZ, et al. Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study [J]. JMIR mHealth and uHealth, 2018, 6(4): e94.

[27]??? 王穎, 張嵩, 許偉. 便攜式和穿戴式心電測(cè)量設(shè)備在心房顫動(dòng)篩查中的應(yīng)用[J]. 中國(guó)醫(yī)刊, 2020, 55(06): 592-593.

[28]??? Aboy M, McNames J, Thong T, et al. An automatic beat detection algorithm for pressure signals [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(10): 1662-1670.

[29]??? Xu XY, Wei SS, Ma CY, et al. Atrial fibrillation beat identification using the combination of modified frequency slice wavelet transform and convolutional neural networks [J]. Journal of Healthcare Engineering, 2018, 2018: 2102918.

[30]??? 范平, 陳晨, 彭伊, 等. “掌上心電”E-U08心電記錄儀遠(yuǎn)程監(jiān)測(cè)心律失常和心肌缺血的臨床應(yīng)用研究[J].實(shí)用心電學(xué)雜志, 2017, 26(1): 10-15.

Fan P, Chen C, Peng Y, et al. Clinical application of E-U08 snap ECG recorder in remote monitoring of arrhythmia and myocardial ischemia[J]. Journal of Practical Electrocardiology, 2017, 26(1): 10-15.

[31]??? William AD, Kanbour M, Callahan T, et al. Assessing the accuracy of an automated atrial fibrillation detection algorithm using smartphone technology: the iREAD study [J]. Heart Rhythm, 2018, 15(10): 1561-1565.

[32]??? Bumgarner JM, Lambert CT, Hussein AA, et al. Smartwatch algorithm for automated detection of atrial fibrillation [J]. Journal of the American College of Cardiology, 2018, 71(21): 2381-2388.

[33]??? January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task force on clinical practice guidelines and the heart rhythm society [J]. Circulation, 2019, 140(2): e125-e151.

[34]??? 趙心馳,胡岸明,何為.基于卷積神經(jīng)網(wǎng)絡(luò)和XGBoost的摔倒檢測(cè)[J].激光與光電子學(xué)進(jìn)展, 2020, 57(16): 161024.

Zhao XC, Hu AM, He W. Fall detection based on convolutional neural network and XGBoost[J]. Las Optoelect Prog, 2020, 57(16): 161024.

[35]??? Aicha AN, Englebienne G, van Schooten KS, et al. Deep learning to predict falls in older adults based on daily-life trunk accelerometry [J]. Sensors, 2018, 18(5): 1654.

[36]??? ?zdemir AT. An analysis on sensor locations of the human body for wearable fall detection devices: Principles and practice [J]. Sensors, 2016, 16(8): 1161.

[37]??? 鄭曉佳, 田江宣, 施趙維, 等. 可穿戴設(shè)備在糖尿病患者血糖管理中的應(yīng)用價(jià)值分析[J].中國(guó)現(xiàn)代醫(yī)生. 2020, 58(10): 100-103.

Zhen XJ, Tian JX, Shi ZW, et al. Analysis on the application value of wearable devices in blood glucose management of diabetic patients[J]. China Modern Doctor, 2020, 58(10): 100-103.

[38]??? Hamdi T, Ali JB, Costanzo VD, et al. Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm [J]. Biocybernetics and Biomedical Engineering, 2018, 38(2): 362-372.

[39]??? Mhaskar HN, Pereverzyev SV, van der Walt MD. A deep learning approach to diabetic blood glucose prediction[J]. Frontiers in Applied Mathematics and Statistics, 2017, 3: 14.

[40]??? Bonn SE, Alexandrou C, Steiner KH, et al. App-technology to increase physical activity among patients with diabetes type 2-the DiaCert-study, a randomized controlled trial [J]. BMC Public Health, 2018, 18:119.

[41]??? 賈寧, 李瑛達(dá). 基于智能可穿戴設(shè)備的個(gè)性化健康監(jiān)管平臺(tái)的構(gòu)建[J].計(jì)算機(jī)科學(xué), 2019, 46(z1): 566-570.

Jia N, Li YD. Construction of personalized health monitoring platform based on intelligent wearable devices[J]. Computer Science, 2019, 46(z1): 566-570.

[42]??? Schutz Y, Weinsier RL, Hunter GR. Assessment of free-living physical activity in humans: an overview of currently available and proposed new measures[J]. Obesity Research, 2001, 9(6): 368-379.

[43]??? Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation[J]. The New England Journal of Medicine, 2019, 381(20):1909-1917.

[44]??? Gilani M, Eklund JM, Makrehchi M. Automated detection of atrial fibrillation episode using novel heart rate variability features[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE Press, 2016,2016: 3461-3464.

[45]??? 胡可慧, 陳校云, 張曙欣, 等. 可穿戴設(shè)備在發(fā)達(dá)國(guó)家康復(fù)醫(yī)學(xué)中的研究與應(yīng)用[J]. 中國(guó)數(shù)字醫(yī)學(xué), 2018, 13(8): 56-59, 15.

Hu KH, Chen XY, Zhang SX, et al. Research and application of wearable devices in rehabilitation medicine in developed countries[J]. China Digital Medicine, 2018, 13(8): 56-59, 15.

[46]??? 寇家華. 深化智能可穿戴設(shè)備在醫(yī)療健康領(lǐng)域的應(yīng)用[N]. 人民郵電報(bào), 2020-06-12(7).

[47]??? 伍 星,伍 瑛,黃曉梅,等.智慧醫(yī)療背景下城市社區(qū)老年人健康管理模式優(yōu)化研究[J]. 中國(guó)醫(yī)藥導(dǎo)報(bào),2020,17(33): 194-197.

Wu X, Wu Y, Huang XM, et al. Study on the optimization of health management model for the elderly in urban communities under the background of smart medical treatment[J]. China Medical Herald,2020,17(33): 194-197.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]