51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
房水流動(dòng)粒子圖像測(cè)速測(cè)試中跟隨性示蹤粒子選擇的實(shí)驗(yàn)研究

Selection of tracing particles with optimal following performance for particle image velocimetry test of aqueous humor flow

作者: 王文佳  龍曉雪  劉志成  張弓  宋紅芳  
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京100069) <p>臨床生物力學(xué)應(yīng)用基礎(chǔ)研光北京市重點(diǎn)實(shí)驗(yàn)空(北京10009)3首都醫(yī)科大學(xué)附屬北京天壇醫(yī)院(北京100070)</p> <p>通信作者:宋紅芳。[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 粒子圖像測(cè)速;  流場(chǎng);  熒光粒子;實(shí)驗(yàn)研究  
分類號(hào):R318.04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·5(471-477)
摘要:

目的 在房水流動(dòng)粒子圖像測(cè)速(particle image velocimetry,PIV)測(cè)試中,選擇最佳跟隨性示蹤粒子是展示真實(shí)流場(chǎng)的必要前提。本文探討眼球房水慢流PIV測(cè)試中不同粒子的跟隨性并選擇最佳顯影效果的示蹤粒子。方法 依據(jù)幾何相似性原理,設(shè)計(jì)并加工5倍于真實(shí)人眼大小的眼球模型;分別選擇10 空心玻璃珠,以及1、3 、7 、和20~50 粒徑熒光粒子作為示蹤粒子,運(yùn)用PIV系統(tǒng)在眼球模型上進(jìn)行流場(chǎng)測(cè)試,比較粒子的空間分布規(guī)律探討粒子跟隨性問題,確定可用于房水流場(chǎng)測(cè)試的最佳示蹤粒子。結(jié)果 熒光粒子的粒徑越大,沉淀的速度越快,則沉淀量越多。1 的熒光粒子跟隨性好、但顯影效果不佳。3 熒光粒子隨著測(cè)量時(shí)間的增加,沉淀最不明顯,跟隨性和顯影效果最佳。結(jié)論 示蹤粒子直徑對(duì)其在眼球房水流動(dòng)中的跟隨性和顯影效果具有顯著影響。基于當(dāng)前的PIV設(shè)備,3 熒光粒子是房水流場(chǎng)測(cè)試最佳的示蹤粒子。本研究為采用PIV技術(shù)進(jìn)行體外房水流場(chǎng)測(cè)量提供一定的實(shí)驗(yàn)基礎(chǔ)。

 

Objective In the particle image velocimetry(PIV) test on aqueous humor flow, the selection of optimal tracing particles with optimal following performance is a necessary prerequisite to show the real flow field. This paper investigates the following performance of different tracing particles and selects tracing particle with optimal exposure effect in the PIV test of low-speed aqueous humor flow field in eyes. Methods A five-fold human eyeball model was designed and fabricated. The 10 hollow glass beads, 1, 3, 7 and 20~50 fluorescent particles, were selected as the tracing particles for the measurement of PIV system on the eyeball model. The spatial distributions of the different particles were compared to explore the problem of particle following performance so as to determine the optimal tracing particle for the aqueous humor flow test. Results The larger the particle size, the faster the precipitation rate and the more the precipitation amount. The following performance of 1 fluorescent particle was good while its exposure effect not fine. The precipitation of 3 fluorescent particle was the least obvious, and its following performance and exposure effect were the best with the increase of measurement time in the current PIV system. Conclusions The diameter of tracing particle has significant influence on its following performance and exposure effect in aqueous humor flow. The 3 fluorescent particle is the best tracing particle for the measurement of aqueous humor flow field based on the present PIV system. This study provides certain experimental basis for the aqueous humor flow in vivo by using PIV technology.

 

參考文獻(xiàn):

[1]?Kwon YH, Fingert JH, Kuehn M H, et al. Mechanism of Disease: Primary open-angle glaucoma[J]. New England Journal of Medicine, 2009(11): 1113-1124.

[2]?Pascolini D, Mariotti S P. Global estimates of visual impairment: 2010[J]. British Journal of Ophthalmology, 2012, 96(5):614-618.

[3]?Ethier C R, Johnson M, Ruberti J. Ocular biomechanics and biotransport[J]. Annual Review of Biomedical Engineering, 2004, 6(1):249-273.

[4]?陳琛,?劉曉華. 青光眼相關(guān)生物力學(xué)研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程,?2007, 26(1):92-94.

Chen C,?Liu XH. The progression of the biomechanicai study on glaucoma[J]. Beijing Biomedical Engineering,?2007, 26(1):92-94.

[5]?Stamper RL. Chandler and Grant's Glaucoma. Ophthalmology, 1986, 93(9): 97-98.

[6]?Caprioli J. The ciliary epithelia and aqueous humor[M]//?Tychsen L?.Adler’s Physiology of the Eye: Clinical Application.?9th ed. St. Louis: Mosby-Year Book Inc,1992: 228-247.

[7]?Adrian??RJ. Particle-image techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261-304.

[8]?范潔川. 近代流動(dòng)顯示技術(shù)[M]. 北京:國(guó)防工業(yè)出版社,?2002.

Fan JC. Modern flow visualization[M].?Beijing:National Defense Industry Press,?2002.

[9] ?尹協(xié)振,?續(xù)伯欽, 張寒虹. 實(shí)驗(yàn)力學(xué)[M]. 北京:高等教育出版社, 2012.

Yin?XZ,?Xu BQ,?Zhang HH. Experimental Mechanics[M].?Beijing:Higher Education Press,?2012.

[10] ?沈鈞濤,?陳十一. 球形粒子在流體中的跟隨性[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 1989(1):50-58.

Shen JT,?Chen?SY. The following behaviours of a spherical particle in fiuid flow[J].?Acta Aerodynamica Sinica,?1989(1):50-58.

[11] ?嚴(yán)敬, 楊小林, 鄧萬權(quán),?等. 示蹤粒子跟隨性討論[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),?2005, 36(6): 54-56.

Yan J,?Yang XL, Deng WQ,?et al.?Analysis on following features of tracer particles[J].?Transactions of the Chinese Society for Agricultural Machinery,?2005, 36(6): 54-56.

[12] ?李亞林,?袁壽其,?湯躍,?等. 離心泵內(nèi)流場(chǎng)PIV測(cè)試中示蹤粒子跟隨性的計(jì)算[J].排灌機(jī)械工程學(xué)報(bào), 2012, 30(1): 6-10.

Li YL,?Yuan SQ,?Tang?Y,?et al. Analysis on tracing ability of PIV seeding particles in flow fields of centrifugal pumps[J].?Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(1): 6-10.

[13] ?沙文慧,?周騖,?蔡小舒. 湍流射流中示蹤粒子的跟隨性數(shù)值模擬分析[J].上海理工大學(xué)學(xué)報(bào), 2017, 39(2): 103-109.

Sha?WH,?Zhou W,?Cai XS. Numerical study on the flow tracking capability of tracer particles in a turbulent jet[J].?University of Shanghai for Science and Technology, 2017, 39(2): 103-109.

[14] ?楊紅玉, 宋紅芳, 李林, 等. 基于PIV技術(shù)研究眼內(nèi)房水流動(dòng)特性的實(shí)驗(yàn)設(shè)計(jì)[J]. 醫(yī)用生物力學(xué), 2012,28(2): 229-234.

Yang HY,?Song HF,?Li?L,?et al. Experimental design on flow characteristics of aqueous humor based on PIV method[J].?Journal of Medical Biomechanics, 2012,28(2): 229-234.

[15] ?Repetto R, Pralits JO, Siggers JH, et al. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flowphakic iris-fixated intraocular lens placement[J]. Investigative ophthalmology & visual science, 2015, 56(5): 3061-3068.

[16] ?袁壽其,?李亞林,?湯躍,?等.?示蹤粒子在離心泵內(nèi)流場(chǎng)跟隨性的影響因素分析[J]. 機(jī)械工程學(xué)報(bào),?2012,?48(20): 174-181.

Yuan SQ,?Li YL,?Tang?Y,?et al. Analysis on factors influencing following features of tracer particles in centrifugal pumps[J]. Journal of Mechanical Engineering,?2012,?48(20): 174-181.

[17] ?Fitt AD, Gonzalez G. Fluid mechanics of the human eye: aqueous humor flow in the anterior chamber[J]. Bulletin of Mathematical Biology, 2006, 68(1): 53-71.

[18] ?Villamarin A, Roy S, Hasballa R, et al. 3D simulation of the aqueous flow in the human eye[J]. Medical Engineering Physics, 2012, 34(10): 1462-1470.

[19] ?Wang WJ, Qian XQ, Song HF, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. Biomedical Engineering Online, 2016, 15(2): 569-586.

[20] ?王萬筆,?敖開忠,?樊建中,?等. 適于磁共振成像研究房水循環(huán)兔模型的建立[J]. 放射學(xué)實(shí)踐, 2008, 23(10): 1076-1078.

Wang?WB,?Ao?KZ,?Fan?JZ, et al. Establishment of rabbit model of aqua oculi circulation for MRI study[J].?Radiol Practice, 2008, 23(10): 1076-1078.

[21] ?宋紅芳,?楊紅玉,?劉志成. 正常兔眼后房壓強(qiáng)及前后房壓強(qiáng)差值的在體監(jiān)測(cè)[J]. 北京生物醫(yī)學(xué)工程,?2011, 30(4):335-338.

Song HF,?Yang?HY,?Liu?ZC. Surveying of pressure in posterior chamber and pressure difference between anterior and posterior chambers of rabbit eye in vivo[J]. Beijing Biomedical Engineering,?2011, 30(4):335-338.

[22] ?Yang HY , Song HF , Mei X , et al. Experimental research on intraocular aqueous flow by PIV method[J]. Biomedical Engineering Online, 2013, 12(108):1-8.

[23] ?朱志鵬,?秦彬瑋,?張英莉,?等. 稀薄氣體流動(dòng)的粒子圖像測(cè)速實(shí)驗(yàn)研究[J]. 2021, 58(1): 38-44

??????Zhu ZP,Qin BW,Zhang YL,et al.?Experimental study on particle image velocimetry of rarefied gas flow[J]. Vacuum,2021, 58(1): 38-44

[24] ?秦俊,?黃晨,?王昕,?等. 基于水模擬回風(fēng)流場(chǎng)的 PIV 測(cè)試粒子跟隨性研究[J]. 水資源與水工程學(xué)報(bào), 2015, 26(1):143-153.

Qin?J,?Huang?C,?Wang?X,?et al.?Research on flowing behaviors of particle tracers tested by PIV based on water simulating air return flow field[J]. Journal of Water Resources & Water Engineering, 2015, 26(1):143-153.

[25] ?王彥植,?陳方,?劉洪, 等. 高速流動(dòng)PIV示蹤粒子跟隨響應(yīng)特性實(shí)驗(yàn)研究[J]. 實(shí)驗(yàn)流體力學(xué),?2018, 32(3): 94-99.

Wang YZ,?Chen?F,?Liu?H,?et al.?Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J].?Journal of Experiments in Fluid?Mechanics,?2018, 32(3): 94-99.

[26] ?吳優(yōu), 鄒燚, 曹斌, 等. 基于PIV技術(shù)的粗顆粒在管流中跟隨性試驗(yàn)研究[J]. 水動(dòng)力研究與進(jìn)展,??2017, 32(6):739-746.

Wu Y,?Zou?Y,?Cao?B,?et al.?Experimental study on coarse particles following behavior in pipeline flow based on PIV technique[J].?Chinese Journal of Hydrodynamics,?2017, 32(6):739-746.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]