51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于多特征融合的睡眠分期

Sleep staging based on multi-feature fusion

作者: 熊馨  羅劍花  王春武  易三莉  劉瑞湘  賀建峰  
單位:昆明理工大學(xué)信息工程與自動(dòng)化學(xué)院(昆明650500) <p>吉林師范大學(xué)信息與技術(shù)學(xué)院(吉林四平136000)</p> <p>云南省第二人民醫(yī)院臨床心理科(昆明650021)</p> <p>通信作者:賀建峰,教授。E-mails: [email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 睡眠分期;腦電;多特征融合;樣本熵;小波包能量;去趨勢(shì)波動(dòng)  
分類號(hào):R318.04 <p>&nbsp;</p>
出版年·卷·期(頁(yè)碼):2021·40·5(487-493)
摘要:

目的 為了有效實(shí)現(xiàn)睡眠自動(dòng)分期,對(duì)睡眠障礙等相關(guān)疾病的診斷提供更多依據(jù),本文提出了一種基于多特征融合的睡眠分期方法。方法 數(shù)據(jù)來(lái)自ISRUC-Sleep數(shù)據(jù)庫(kù),首先對(duì)10名健康受試者和10名睡眠障礙患者的腦電(electroencephalogram ,EEG)信號(hào)計(jì)算3種特征—-樣本熵、小波包能量和去趨勢(shì)波動(dòng)。然后采用支持向量機(jī)(support vector machine, SVM)構(gòu)建睡眠分期模型,并驗(yàn)證該模型的準(zhǔn)確性。此外,為了進(jìn)行比較加入心電(electrocardiogram ,ECG)和肌電(electromyogram ,EMG)通道。結(jié)果 健康受試者和睡眠障礙患者睡眠分期的準(zhǔn)確率分別達(dá)到87.4%和86.3%。結(jié)論  基于多特征融合的睡眠分期方法能夠有效地提高睡眠分期的準(zhǔn)確率。

 

Objective In order to realize the automatic sleep staging effectively and to provide more evidence for the diagnosis of sleep disorders and other related diseases, a sleep staging method based on multi-feature fusion is proposed in this paper. Methods Electroencephalogram(EEG) signals come from ISRUC-Sleep database, including 10 healthy subjects and 10 patients with sleep disorder problems. Three characteristics that include sample entropy, wavelet packet energy and detrended fluctuations were calculated. Then Support Vector Machine (SVM) was used to construct the sleep staging model and the accuracy of the model was verified. Additionally, electrocardiogram(ECG) and electromyogram(EMG) signals were also involved for comparison. Results The accuracy of sleep staging in two groups reached 87.4% and 86.3% respectively. Conclusions The sleep staging method based on multi-feature fusion can effectively improve the accuracy of sleep staging.

 

參考文獻(xiàn):

[1] Solomon GE . Electroencephalography—Basic principles, clinical applications and related fields[M].2 ed. Uvbanl:?Schwarzerberg,1987:97-129.

[2]豐彬. 基于多特征提取的癲癇腦電自動(dòng)分類檢測(cè)研究[D]. 南寧:廣西大學(xué),2018.

Feng B. Automated classification and detection of epilepsy?EEG based on multi- feature extraction[D]. Nanning:Guangxi University,2018.

[3] 王強(qiáng)強(qiáng). 基于特征篩選腦電睡眠分期算法研究[D]. 重慶:重慶郵電大學(xué),?2019.

Wang QQ.?Study of sleep staging algorithm based on feature selection[D]. Chongqing:Chongqing University of Posts and Telecommunications,2019.

[4] 王春芳,張力新,劉爽等. 基于去趨勢(shì)波動(dòng)分析(DFA)的腦卒中后抑郁癥靜息腦電特征提取與識(shí)別[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2013,32(5):520-525.

Wang?CF, Zhang LX, Liu S, et al. Feature extraction and recognition of resting eeg in poststroke depression subjects based on detrended fluctuation analysis[J]. Chinese Journal of Biomedical Engineering,2013,32(5):520-525.

[5] 程佳. 基于腦電信號(hào)的睡眠分期研究[D]. 北京:北京理工大學(xué),2015.

Cheng J. Research of sleep staging based on EEG signals[D].Beijing: Beijing Institute of Technology,2015.

[6] 唐其彪. 基于腦電信號(hào)的自動(dòng)睡眠分期研究[D]. 廣州:廣東工業(yè)大學(xué),2019.

Tang QB. Research of automatic sleep staging based on EEG?signals[D]. Guangzhou:Guangdong University of Technology,2019.

[7] 鄭聲濤,鄭日榮,曹義成. 小波包能量譜在睡眠分期中的應(yīng)用[J]. 工業(yè)控制計(jì)算機(jī),2014,27(4):87-88.

Zheng ST,Zheng RR,Cao YC.Application of wavelet packet energy spectrum in sleep staging[J].?Industrial Control Computer,2014,27(4):87-88.

[8] Boostani?R,?Karimzadeh?F,?Nami?M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine,?2017,140:?77-91.

[9] 呂甜甜,王心醉,俞乾等. 基于多參數(shù)特征融合的自動(dòng)睡眠分期方法[J]. 計(jì)算機(jī)應(yīng)用,2017,37(S2):313-317.

Lyu?TT,Wang XZ,YU Q, et al. Automatic sleep staging method based on multi-parameter feature fusion[J]. Journal of Computer Applications,?2017,37(S2):313-317.

[10]?葉仙,胡潔,田畔等. 基于精細(xì)復(fù)合多尺度熵與支持向量機(jī)的睡眠分期[J]. 上海交通大學(xué)學(xué)報(bào),2019,53(3):321-326.

Ye?X,?Hu?J,?Tian P,?et al. Automatic sleep scoring based on refined composite multi-scale entropy and support vector machine[J]. Journal of Shanghai?Jiaotong Universitye,2019,53(3):321-326.

[11]?何垣諦. 睡眠分期算法研究[D]. 北京:電子科技大學(xué),2019.

He YD.?Research of Sleep Stage Classification Algorithm[D]. Beijing:University of Electronic Science and Technology of China,2019.

[12] Khalighi?S,Sousa?T, Pires?G,?et al.?Automatic sleep staging: a?computer assisted approach for optimal?combination of features and?polysomnographic channels[J].?Expert Systems with Applications,2013,40:7046-7059.

[13] Khalighi?S,Sousa?T,?Santos?JM,?et al. ISRUC-Sleep: a?comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine,2016,124:?180-192.

[14] Richman JS,?Moorman JR. Physiological time-series analysis using approximate and entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology

,2000,278(06):2039-2049.

[15]周紅標(biāo),陳若珠,李軍紅. 基于小波包變換的癲癇腦電信號(hào)特征提取[J]. 電子測(cè)量技術(shù),2009,32(10):36-39.

Zhou HB,Chen RZ,Li JH.Feature extraction of epileptic EEG signals based on wavelet package transform[J].?Electronic Measurement Technology,2009,32(10):36-39.

[16]寧艷,江朝暉,安濱等. 睡眠生理參數(shù)的去趨勢(shì)波動(dòng)分析[J].生物醫(yī)學(xué)工程學(xué)雜志,2007,24(2):249-252.

Ning Y, Jiang ZH, An B, et al. Detrended fluctuation analysis of physiological parameters during sleep[J].?Journal of Biomedical Engineering,2007,24(2):249-252.

[17]?周靜,吳效明. 基于樣本熵的睡眠呼吸暫停綜合征腦電研究[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2016,33(7):722-725.

Zhou?J, Wu XM. Electroencephalogram of sleep apnea syndrome based on sample entropy[J].?Chinese Journal of Medical Physics,2016,33(7):722-725.

[18]Sen B, Peker M, Cavusoglu A,et al. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms[J].Journal of Medical Systems,2014,38(3):1-21.

[19]胡葉容. 基于去趨勢(shì)波動(dòng)分析的腦電信號(hào)睡眠分期[J]. 生物醫(yī)學(xué)工程學(xué)進(jìn)展,2015,36(4):201-204.

Hu YR.Sleep staging of EEG with detrended fluctuation analysis[J]. Progress in Biomedical Engineering,2015,36(4):201-204.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]