[1] Zhang ZJ, Li?H, Fogel GR, et al. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis[J]. World Neurosurg,2018,111(28): E581-591.
[2] Louie P K, An H S, Phillips FM. Comparison of stand-alone lateral lumbar interbody fusion versus open laminectomy and posterolateral instrumented fusion in the treatment of adjacent segment disease following previous lumbar fusion surgery[J]. Spine,2019,44(24):1461-1469.
[3] 張良. PLIF與TLIF對(duì)腰椎穩(wěn)定性影響的有限元分析[D]長春:吉林大學(xué),2016.
??Zhang L.?Finite element analysis of the effect of PLIF and TLIF on lumbar stability.Changchun:Jilin University,2016.
[4] Ambati DV,Wright EK,Lehman RA, et al. Pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a?finite element study[J]. The Spine Journal,2015,15(8):1812-1822.
[5] Liu XL, Ma J, Park P, et al. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a?three-dimensional finite element study[J]. ?BMC Musculoskeletal Disorders,2017,18 (1):1-11.
[6] Choi J, Shin D, Kim S. Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study[J]. Spine,2017,42(6):332-339.
[7] 張振軍,孫藝萄,廖振華,等. 有限元法在腰椎融合術(shù)與置換術(shù)生物力學(xué)研究中應(yīng)用進(jìn)展[J]. 醫(yī)用生物力學(xué),2018,33(1):126-132.
Zhang ZJ,Sun YP,Liao ZH,et al.?Progress of finite element method applied in biomechanical researches on lumbar fusion and replacement[J]. Journal of Medical Biomechanics,2018,33(1):126-132.
[8] Morimoto T, Kobayashi T, Mawatari M. Letter to the editor concerning "comparison of stand-alone lateral lumbar interbody fusion versus open laminectomy and posterolateral instrumented fusion in the treatment of adjacent segment disease following previous lumbar fusion surgery" by Louie et al[J]. Spine,2020,45(13):115-118.
[9] 張振軍,李文釗,李慧,等. 多孔鈦腰椎融合器在不同入路椎間融合術(shù)中的生物力學(xué)性能[J]. 醫(yī)用生物力學(xué),2019,34(3):243-250.
Zhang ZJ,Li WZ,Li H,et al.Biomechanical properties of porous titanium cages for different lumbar interbody fusion surgeries[J]. Journal of Medical Biomechanics,2019,34(3):243-250.
[10] Zhang ZJ, Li?H, Fogel GR, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages[J] .?Computers in?Biology and Medicine,2018,95(32):167-174.
[11] Gokhan B , Ilkay I , Sahin H .?Radiological and clinical comparison of posterolateral fusion and transforaminal interbody fusion techniques in degenerative lumbar stenosis[J]. World Neurosurgery,2018,116(2):1060-1065.
[12] Kai-Hong CA, Bisson EF, Mohamad B, et al. A comparison of minimally invasive transforaminal lumbar interbody fusion and decompression alone for degenerative lumbar spondylolisthesis[J]. Neurosurg Focus,2019,46(5):138-141.
[13] Lee DG, Park CK, Lee DC. Clinical and radiological comparison of 2 level anterior lumbar interbody fusion with posterolateral fusion and percutaneous pedicle screw in elderly patients with osteoporosis[J]. Medicine,2020,99(10):19205.
[14] Xi Z, Burch S, Chang C C, et al. Anterior lumbar interbody fusion (ALIF) versus oblique lateral interbody fusion (OLIF) at L5-S1: a comparison of two approaches to the lumbosacral junction[J]. Neurosurgery,2019,66(32):277-281.
[15] 郭惠智,梁德,張順聰,等. 斜外側(cè)入路椎間融合術(shù)不同內(nèi)固定方式的有限元分析[J]. 醫(yī)學(xué)研究生學(xué)報(bào),2020,13(4):394-398.
Guo HZ,Liang D,Zhang SC,et al.?Different internal fixation methods of oblique lateral interbody fusion:A finite element analysis[J]. ?Journal of Medical Postgraduates,2020,13(4):394-398.
[16] Hu B, Yang X, Lyu Q, et al. Comparison of extending fusion to thoracic curve versus thoracolumbar/lumbar fusion in posterior fusion of patients with lenke 5c: variation in upper end vertebrae tilt affected coronal balance[J]. World Neurosurg,2019,121(38):827-835.
?
|