51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
不同入路椎間融合術(shù)中腰椎融合器的生物力學(xué)性能

Biomechanical property of lumbar fusion cages in different approaches of interbody fusion

作者: 陳政宇  李學(xué)林  晏怡果  
單位:南華大學(xué)附屬第一醫(yī)院脊柱外科(湖南衡陽 421001) <p>通信作者:晏怡果。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 椎間融合術(shù);腰椎融合器;生物力學(xué);活動(dòng)度;有限元  
分類號(hào):R318.01 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·5(521-525)
摘要:

目的 探討不同入路椎間融合術(shù)中腰椎融合器的生物力學(xué)性能,為臨床上合理選擇手術(shù)方式提供理論支持。方法 基于正常人L3~4節(jié)段的CT掃描數(shù)據(jù),采用3D打印技術(shù)進(jìn)行鈦合金椎間融合器制作,設(shè)備為EOSINT M280(EOS GmbH公司,德國)。建立完整的腰椎三維有限元模型,通過實(shí)驗(yàn)?zāi)P瓦M(jìn)行不同入路的生物力學(xué)性能測定并進(jìn)行對(duì)比研究。手術(shù)入路包括前路腰椎間融合術(shù)(anterior lumbar interbody fusion ,ALIF)、后路腰椎間融合術(shù)(posterior lumbar interbody fusion ,PLIF)、直接外側(cè)腰椎間融合術(shù)(direct lateral lumbar interbody fusion ,DLIF)和經(jīng)椎間孔入路腰椎間融合術(shù)(transforaminal lumbar interbody fusion ,TLIF)。在L3椎體表面施加500 N的人體重力和10 N·m力矩,模擬腰椎前屈、后伸、左側(cè)彎、右側(cè)彎、左旋轉(zhuǎn)、右旋轉(zhuǎn)6種生理活動(dòng),觀察力學(xué)性能差異。結(jié)果 行不同入路腰椎融合術(shù)后,ALIF以及DLIF模型的預(yù)測活動(dòng)度(range of motion,ROM)和椎間融合器應(yīng)力顯著低于PLIF和TLIF模型;ALIF、DLIF以及TLIF模型的終板應(yīng)力較PLIF顯著降低。結(jié)論 在4種不同入路的選擇中,ALIF、DLIF術(shù)后模型的ROM、融合器應(yīng)力、終板應(yīng)力均有良好表現(xiàn)。結(jié)合臨床ALIF的局限性在于前路手術(shù)操作相對(duì)復(fù)雜,容錯(cuò)率較低,而DLIF入路效果與ALIF相似,且具有更好的綜合性優(yōu)勢,同時(shí)在臨床操作過程中更適合于微創(chuàng)手術(shù)。

 

Objective To investigate the biomechanical properties of lumbar interbody fusion cage in different approaches, and to provide theoretical support for the reasonable choice of surgical methods in clinic. Methods Based on the CT scan data of L3~4 segments of normal people, the porous titanium alloy models were made by 3D printing technology through four different approaches. The equipment was eosint M280 (EOS GmbH, Germany). A complete three-dimensional finite element model of lumbar spine was established. The biomechanical properties of different approaches were measured and compared through the experimental model. The surgical approaches included anterior lumbar interbody fusion (ALIF), posterior lumbar interbody fusion (PLIF), direct lateral lumbar interbody fusion (DLIF) and transforaminal lumbar interbody fusion (TLIF). Five hundred n human gravity and 10 N · m torque were applied on the L3 surface to simulate six physiological activities, including flexion, extension, left bending, right bending, left rotation and right rotation . Results After lumbar fusion, the range of motion (ROM) and cage stress of ALIF and DLIF models were significantly lower than those of PLIF and TLIF models, and the endplate stress of ALIF, DLIF and TLIF models was significantly lower than that of PLIF. Conclusions Among the four different approaches, the ROM, fuser stress and endplate stress of ALIF and DLIF have good results. However, the disadvantage of ALIF is that the anterior approach is complicated and the fault tolerance rate is low, while the DLIF only takes the lateral approach, and the effect is similar to that of ALIF. Therefore, DLIF can be recommended for clinical practice.

 

參考文獻(xiàn):

[1] Zhang ZJ, Li?H, Fogel GR, et al. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis[J]. World Neurosurg,2018,111(28): E581-591.

[2] Louie P K, An H S, Phillips FM. Comparison of stand-alone lateral lumbar interbody fusion versus open laminectomy and posterolateral instrumented fusion in the treatment of adjacent segment disease following previous lumbar fusion surgery[J]. Spine,2019,44(24):1461-1469.

[3] 張良. PLIF與TLIF對(duì)腰椎穩(wěn)定性影響的有限元分析[D]長春:吉林大學(xué),2016.

??Zhang L.?Finite element analysis of the effect of PLIF and TLIF on lumbar stability.Changchun:Jilin University,2016.

[4] Ambati DV,Wright EK,Lehman RA, et al. Pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a?finite element study[J]. The Spine Journal,2015,15(8):1812-1822.

[5] Liu XL, Ma J, Park P, et al. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a?three-dimensional finite element study[J]. ?BMC Musculoskeletal Disorders,2017,18 (1):1-11.

[6] Choi J, Shin D, Kim S. Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study[J]. Spine,2017,42(6):332-339.

[7] 張振軍,孫藝萄,廖振華,等. 有限元法在腰椎融合術(shù)與置換術(shù)生物力學(xué)研究中應(yīng)用進(jìn)展[J]. 醫(yī)用生物力學(xué),2018,33(1):126-132.

Zhang ZJ,Sun YP,Liao ZH,et al.?Progress of finite element method applied in biomechanical researches on lumbar fusion and replacement[J]. Journal of Medical Biomechanics,2018,33(1):126-132.

[8] Morimoto T, Kobayashi T, Mawatari M. Letter to the editor concerning "comparison of stand-alone lateral lumbar interbody fusion versus open laminectomy and posterolateral instrumented fusion in the treatment of adjacent segment disease following previous lumbar fusion surgery" by Louie et al[J]. Spine,2020,45(13):115-118.

[9] 張振軍,李文釗,李慧,等. 多孔鈦腰椎融合器在不同入路椎間融合術(shù)中的生物力學(xué)性能[J]. 醫(yī)用生物力學(xué),2019,34(3):243-250.

Zhang ZJ,Li WZ,Li H,et al.Biomechanical properties of porous titanium cages for different lumbar interbody fusion surgeries[J]. Journal of Medical Biomechanics,2019,34(3):243-250.

[10] Zhang ZJ, Li?H, Fogel GR, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages[J] .?Computers in?Biology and Medicine,2018,95(32):167-174.

[11] Gokhan B , Ilkay I , Sahin H .?Radiological and clinical comparison of posterolateral fusion and transforaminal interbody fusion techniques in degenerative lumbar stenosis[J]. World Neurosurgery,2018,116(2):1060-1065.

[12] Kai-Hong CA, Bisson EF, Mohamad B, et al. A comparison of minimally invasive transforaminal lumbar interbody fusion and decompression alone for degenerative lumbar spondylolisthesis[J]. Neurosurg Focus,2019,46(5):138-141.

[13] Lee DG, Park CK, Lee DC. Clinical and radiological comparison of 2 level anterior lumbar interbody fusion with posterolateral fusion and percutaneous pedicle screw in elderly patients with osteoporosis[J]. Medicine,2020,99(10):19205.

[14] Xi Z, Burch S, Chang C C, et al. Anterior lumbar interbody fusion (ALIF) versus oblique lateral interbody fusion (OLIF) at L5-S1: a comparison of two approaches to the lumbosacral junction[J]. Neurosurgery,2019,66(32):277-281.

[15] 郭惠智,梁德,張順聰,等. 斜外側(cè)入路椎間融合術(shù)不同內(nèi)固定方式的有限元分析[J]. 醫(yī)學(xué)研究生學(xué)報(bào),2020,13(4):394-398.

Guo HZ,Liang D,Zhang SC,et al.?Different internal fixation methods of oblique lateral interbody fusion:A finite element analysis[J]. ?Journal of Medical Postgraduates,2020,13(4):394-398.

[16] Hu B, Yang X, Lyu Q, et al. Comparison of extending fusion to thoracic curve versus thoracolumbar/lumbar fusion in posterior fusion of patients with lenke 5c: variation in upper end vertebrae tilt affected coronal balance[J]. World Neurosurg,2019,121(38):827-835.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]