51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于CT影像組學的結直腸癌肝轉移與原發(fā)性肝癌病灶分類研究

Classification of colorectal liver metastases and hepatocellular carcinoma lesions based on CT-radiomics

作者: 王雪虎  郭海峰  殷小平  王云  
單位:河北大學電子信息工程學院(河北保定071002) <p>河北大學附屬醫(yī)院(河北保定071002)</p> <p>通信作者:王雪虎。E-mail: wangxuehu_tougao@ 163. com</p> <p>&nbsp;</p>
關鍵詞: 影像組學;機器學習;原發(fā)性肝癌;結直腸癌;結直腸癌肝轉移  
分類號:R318. 04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·6(551-556)
摘要:

目的 探索結直腸癌肝轉移(colorectal liver metastases, CRLM )與原發(fā)性肝癌(hepatocellular carcinoma,HCC)影像組學特征的差異,以實現(xiàn)對CRLM的精準識別。方法納入河北大學附屬醫(yī)院102 例經病例證實的CRLM和HCC患者術前CT增強影像,將其以7 : 3的比例隨機分配到訓練集和測試 集。首先,采用基于Python的Pyradiomics包從肝臟病灶中提取影像組學特征;然后,利用最小絕對收縮 和選擇算子(least absolute shrinkage and selection operator, LASSO )和遞歸消除( recursive feature elimination, RFE)方法選擇出最優(yōu)特征集合;再應用支持向量機(support vector machine, SVM)、K-近鄰 (k-nearest neighbor, KNN)和隨機森林(random forest, RF)、邏輯回歸(logistic regression, LR) 4 種分類器 算法訓練模型,以受試者工作特征曲線下面積(the area under the receiver operating characteristic curve, AUG)、準確率、敏感度和特異度來評估4種分類器的性能。結果應用SVM分類器算法訓練的模型對 CRLM識別效能較高(準確率為93%,特異度為88%,靈敏度為100%,AUC值為0.94)。結論本文應用 CT影像組學方法提取病灶異質性特征,并通過特征選擇找到訓練模型效果最佳的特征集合,應用SVM 分類器算法訓練的模型能夠比較準確地識別出CRLM病灶,對醫(yī)學診斷具有良好的應用價值。

 

Objective To explore the difference in radiomics characteristics between colorectal liver metastasis (CRLM) and hepatocellular carcinoma ( HCC ) , so as to realize accurate recognition of CRLM. Methods One hundred and two preoperative CT-enhanced images of CRLM and HCC patients from the Affiliated Hospital of Hebei University are included, and they are randomly assigned to the training set and the test set at a ratio of 7 : 3. First, we use the Python-based Pyradiomics package to extract radiomics features from liver lesions. Second, we use the least absolute contraction and selection operator ( LASSO) and recursive elimination ( RFE) methods to select the optimal feature set. Then we apply the support vector machine (SVM) , K-nearest neighbor ( KNN) ,random forest ( RF) ,logistic regression ( LR) four classifier algorithms to train models.This article uses the area under the receiver operating characteristic curve ( AUG ) , accuracy, sensitivity and specificity to evaluate the performance of the four classifiers. Results The model trained with the SVM classifier algorithm has a high recognition performance for CRLM ( accuracy rate of 93%, specificity of 88% , sensitivity of 100%,and AUC value of 0.94) . Conclusions In this paper,CT-radiomics method is used to extract the heterogeneous features of the lesion, and the feature set with the best training model effect is found through feature selection. The model trained by the SVM classifier algorithm can identify CRLM lesions more accurately, which is useful for medical diagnosis.

 

參考文獻:

[1 ] Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality [ J ]. Gut, 2017,66(4) :683-691.

[2 ]史艷龍,蔚瑋,陳亮,等.肝切除治療結直腸癌肝轉移預后影響 因素研究進展[J].中國實用外科雜志,2020,40( 12): 1448-1452.

[3 ] Tan HL, Lee M, Vellayappan BA, et al. The role of liver-directed therapy in metastatic colorectal cancer [ J]. Current Colorectal Cancer Reports, 2018, M( 5) : 129—137.

[4 ]中華醫(yī)學會外科學分會胃腸外科學組,中華醫(yī)學會外科學分 會結直腸外科學組,中國抗癌協(xié)會大腸癌專業(yè)委員會,等.中 國結直腸癌肝轉移診斷和綜合治療指南(2018版)[〕].中華 消化外科雜志,2018,17(6) :527-539.

:5 ]劉銘,邢寶才.術中射頻消融在結直腸癌肝轉移治療中的應用

[J].肝膽胰外科雜志,2020,32(12):705-708,714.

[6 ] Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer[ J]. Cancer Discovery,2016,6(2) : 147-153.

[7]李靜,曾冬竹.腹腔鏡與開腹手術治療結直腸癌近期療效觀察 [J].職業(yè)衛(wèi)生與病傷,2017,32(6) :384-386.

[8 ] Horvat N, Rocha CCT, Oliveira BC, et al. MRI of rectal cancer: tumor staging, imaging techniques, and management [ J ]. Radiographics: a review publication of the Radiological Society of North America, Inc ,2019,39(2) : 367-387.

[9 ] Chen B, Zhang R, Gan Y, et al. Development and clinical application of radiomics in lung cancer] J]. Radiation Oncology, 2017,12:154.

[10] Salvatore C,Castiglioni I,Cerasa A,et al. Radiomics approach in the neurodegenerative brain[ J]. Aging Clinical and Experimental Research,2019,33(6) : 1709-1711.

[11 ] Lambin P, Leijenaar RTH , Deist TM , et al. Radiomics: the bridge between medical imaging and personalized medicine[ J]. Nature Reviews Clinical Oncology,2017,14;749—762.

[12]?馮曉源.精準醫(yī)療,影像先行[J].中華放射學雜志,2016,50 ⑴:1-2.

[13]?Mao B, Zhang LZ, Ning PG, et al. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics [ J ]. European Radiology, 2020, 30: 6924-6932.

[14]?Ma Y, Liu L, Liu J, et al. Prediction of benign and malignant thymic tumors based on radiomics features [ C ]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). Ilmenau,Germany:IEEE Press,2019 :2191—2194.

[15]?Fomacon-Wood I,Mistry H,Ackennann CJ,et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform [ J] . European Radiology, 2020,30:6241-6250.

[16]?Zhang J, Huang Z, Cao L, et al. Differentiation combined hepatocellular and cholangiocarcinoma from intrahepatic cholangiocarcinoma based on radiomics machine learning [ J ]. Annals of Translational Medicine,2020,8(4) : 119.

[17]許露露,舒健,楊春梅.MRI影像組學評估肝細胞肝癌的病理 分級[J].臨床放射學雜志,2020,39(8) :60-63.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]