51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于卷積神經(jīng)網(wǎng)絡的眼科光學相干斷層成像圖像的自動分類

Automatic classification of ophthalmic optical coherence tomographyimages based on the convolution neural network

作者: 趙蒙蒙  魯貞貞  朱書緣  王小兵  馮繼宏  
單位:北京工業(yè)大學環(huán)境與生命學部(北京100124) ,首都醫(yī)科大學附屬北京同仁醫(yī)院眼科中心(北京 100730) <p>通信作者:馮繼宏,E-mail: jhfeng@ bjut. edu. cn;王小兵,E-mail: little-bill@ 263. net</p> <p>&nbsp;</p>
關鍵詞: 眼科疾病;光學相干斷層成像;圖像處理;卷積神經(jīng)網(wǎng)絡;圖像分類  
分類號:R318. 04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·6(557-563)
摘要:

目的提出一種基于卷積神經(jīng)網(wǎng)絡(convolutional neural network, CNN)的眼科光學相干斷 層成像(optical coherence tomography,OCT)圖像自動分類方法,實現(xiàn)對視網(wǎng)膜OCT圖像的自動分類,緩 解人工診斷依賴醫(yī)生的臨床經(jīng)驗、費時費力等問題。方法基于公開的數(shù)據(jù)集2014_BOE_Srinivasan構(gòu) 建了 2個樣本數(shù)據(jù)集。其中樣本數(shù)據(jù)集一為僅對數(shù)據(jù)集中的圖像進行預處理后裁剪,樣本數(shù)據(jù)集二為 對取出測試集后剩余圖像的裁剪過程中引入隨機平移和水平翻轉(zhuǎn)技術對圖像進行擴充,并劃分為訓練 集和驗證集。搭建基于CNN的視網(wǎng)膜OCT圖像分類網(wǎng)絡,并分別使用兩個數(shù)據(jù)集訓練網(wǎng)絡得到分類 模型。最后使用獨立的測試集對模型進行測試,并通過輸出混淆矩陣查看模型對3種類別圖像的分類 情況。結(jié)果通過混淆矩陣計算得出,使用擴充后的圖像訓練的分類模型的準確度為93. 43%,靈敏度為 91.38%,特異度為95. 88%。結(jié)論提出的基于CNN的視網(wǎng)膜OCT圖像自動分類方法可以對老年性黃 斑變性、糖尿病性黃斑水腫和正常3種類別的視網(wǎng)膜OCT圖像進行分類。同時,數(shù)據(jù)擴充有助于提高 分類算法的性能。

 

Objective To propose an automatic classification method of ophthalmic optical coherence tomography ( OCT) images based on the convolutional neural network ( CNN ) , and alleviate the problems of artificial diagnosis relying on the clinical experience of ophthalmologists. Methods The two sample data sets were constructed based on the OCT data set of 2014 BOE Srinivasan. Among them, the sample data set 1 was to crop the images in the data set after preprocessing, the sample data set 2 was to augment the images by introducing the random translation and horizontal flipping technology in the images cropping of remaining images after taking out the test set, and it was divided into training set and validation set. Then a classification network based on the CNN was constructed and respectively trained by the two sample data sets to acquire the classification models. Finally, the model was tested by using the test set,and the accuracy of the model for the three types of retinal OCT images were calculated through the output confusion matrix. Results The accuracy, the sensitivity and the specificity of the model trained by augmented images were 93. 43%, 91. 38% and 95. 88%, respectively. Conclusions The proposed automatic classification method of retinal OCT images based on the CNN can classify the retinal OCT images of age-related macular degeneration, diabetic macular edema and normal. Meanwhile, data augmentation can improve the performance of classification algorithm.

 

參考文獻:

[1 ] Coleman HR, Chan CC, Fems III FL, et al. Age-related macular degeneration [ J]. The Lancet,2008,372(9652) : 1835-1845.

[2 ] Jager RD, Mieler WF, Miller JW. Medical progress: age-related macular degeneration [ J]. New England Journal of Medicine, 2008,358(24):2606-2617.

[3 ] Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema-pathophysiology, screening, and novel therapies [ J]. Diabetes Care,2003 ,26(9) :2653-2664.

[4 ] Lang GE. Diabetic macular edema [ J ]. Ophthalmologica, 2012, 227(Suppl l):21-29.

[5 ] Bressler NM. Age-related macular degeneration is the leading cause of blindness [J]. JAMA,2004,291( 15) : 1900-1901.

[6 ] Farsiu S,Chiu SJ,O' connell RV,et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography [ J ]. Ophthalmology ,2014,121 ( 1 ): 162-172.

[7 ] Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography [ J]. Science, 1991,254(5035) : 1178-1181.

?

[8 ] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks [ J]. Communications of the ACM,2017,60(6) :84-90.

[9 ] Litjens G,Kooi T,Bejnordi BE,et al. A survey on deep learning in medical image analysis [ J]. Medical Image Analysis, 2017, 42:60-88.

[10] Lee CS, Tyring AJ, Deruyter NP, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography [ J ]. Biomedical Optics Express, 2017, 8(7): 3440-3448.

[11 ] Karri SPK, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration [J]. Biomedical Optics Express,2017,8(2) :579.

[12]?Awais M, Muller H, Tang TB, et al. Classification of SD - OCT images using a Deep learning approach [ C ]// 2017 IEEE International Conference on Signal and Image Processing Applications. Kuching, Malaysia: IEEE Press ,2017:489-492.

[13]?Srinivasan PP, Kim LA, Mettu PS, et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images [ J ]. Biomedical Optics Express,2014,5( 10) :3568-3577.

[14]?張茂鑫,李國春.基于HDF5文件格式的MERSI影像數(shù)據(jù)提 取的研究與實現(xiàn)[J].現(xiàn)代農(nóng)業(yè)科學,2009(3) : 189-191,222. Zhang MX, Li GC. The study and implementation of extraction MERSI image data based on the file format of HDF[ J]. Modem Agricultural Science,2009 (3) :189-191,222.

[15]?李飛騰.卷積神經(jīng)網(wǎng)絡及其應用[D].大連:大連理工大學, 2014:20-25.

Li FT. Convolutional neural network and its applications [ D ]. Dalian: Dalian University of Technology ,2014: 20—25.

[16]?周飛燕,金林鵬,董軍.卷積神經(jīng)網(wǎng)絡研究綜述[J].計算機學 報,2017,40(6) : 1229-1251.

Zhou FY, Jin LP, Dong J. Review of convolutional neural networks [ J]. Chinese Journal of Computers, 2017,40 ( 6): 1229-1251.

[17]?王雙印,滕國文.卷積神經(jīng)網(wǎng)絡中ReLU激活函數(shù)優(yōu)化設計 [J].信息通信,2018(1) :42-43,

Wang SY, Teng GW. Optimal design of ReLU activation function in convolutional neural networks [ J ]. Information and Communication,2018 ( 1) :42-43.

[18]?袁銘陽,周長勝,黃宏博,等.卷積神經(jīng)網(wǎng)絡池化方法綜述 [J].軟件工程與應用,2020,9(5):360-372.

Yuan MY, Zhou CS, Huang HB, et al. Survey on convolutional neural networks pooling methods [ J]. Software Engineering and Applications, 2020,9(5) : 360-372.

[19]?程俊華,曾國輝,魯敦科,等.基于Dropout的改進卷積神經(jīng)網(wǎng) 絡模型平均方法[J].計算機應用,2019,39(6):1601-1606.

Cheng JH,Zeng GH,Lu DK,et al. Improved convolutional neural network model averaging method based on dropout [ J] . Journal of Computer Applications,2019,39(6) : 1601-1606.

[20]?李理,應三叢.基于FPGA的卷積神經(jīng)網(wǎng)絡Softmax層實現(xiàn) [J].現(xiàn)代計算機(專業(yè)版),2017 ( 26) :21- 24.

Li L, Ying SC. Softmax layer implementation of neural network based on FPGA [ J] . Modem Computer,2017 ( 26) :21—24.

[21 ] Chen MH, He JT, Jia WY, et al. Segmentation of diabetic macular edema for retinal OCT images [ C ]//Conference on Optics in Health Care and Biomedical Optics VIII. Beijing, China: SPIE, 2018,10820:108200X.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]