51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于三維卷積神經(jīng)網(wǎng)絡(luò)的RNA結(jié)構(gòu)上鎂離子結(jié)合位點(diǎn)預(yù)測(cè)

Prediction of magnesium binding sites in RNA structures based onthree-dimensional convolutional neural network

作者: 趙彥  彭鞏  衛(wèi)康  劉洋  王京京  李春華  
單位:北京工業(yè)大學(xué)環(huán)境與生命學(xué)部(北京100124) 通信作者:李春華。E-mail: chunhuali@ bjut. edu. cn <p>&nbsp;</p>
關(guān)鍵詞: RNA-Mg2+結(jié)合位點(diǎn);三維卷積神徑網(wǎng)絡(luò);RNA三維結(jié)構(gòu);特征貢獻(xiàn);局部坐標(biāo)系  
分類(lèi)號(hào):R318 <p>&nbsp;</p>
出版年·卷·期(頁(yè)碼):2021·40·6(570-576)
摘要:

目的核糖核酸(ribonucleic acid,RNA)在許多生命過(guò)程中起著關(guān)鍵作用,它幾乎參與了遺 傳信息轉(zhuǎn)錄和翻譯的各個(gè)方面。鎂離子(M/+)是RNA折疊成穩(wěn)定三級(jí)結(jié)構(gòu)所必需的,而且常常與核酶 的催化活性有關(guān)。盡管實(shí)驗(yàn)解析的RNA結(jié)構(gòu)越來(lái)越多,但實(shí)驗(yàn)確定RNA結(jié)構(gòu)中的離子存在諸多困難。 三維卷積神經(jīng)網(wǎng)絡(luò)(three-dimensional convolutional neural network,3D-CNN)能夠直接從原始數(shù)據(jù)中學(xué)習(xí) 有用的特征,已被應(yīng)用于一些基于結(jié)構(gòu)的預(yù)測(cè)工作。為此本文擬提出一種基于3D-CNN的RNA結(jié)構(gòu)上 Mg?+結(jié)合位點(diǎn)的預(yù)測(cè)方法RNAMgo方法首先收集蛋白質(zhì)數(shù)據(jù)庫(kù)(protein data bank,PDB)中的RNA結(jié) 構(gòu)構(gòu)建了高分辨率的非冗余RNA-M/+結(jié)合位點(diǎn)數(shù)據(jù)庫(kù)(113個(gè)結(jié)構(gòu));隨后,對(duì)每個(gè)結(jié)合位點(diǎn)建立局部 坐標(biāo)系,以周?chē)h(huán)境(碳、氧、氮、磷原子和電荷)構(gòu)建5個(gè)特征通道,將RNA三級(jí)結(jié)構(gòu)作為3D圖像送 入3D-CNN模型預(yù)測(cè)RNA-Mg2+結(jié)合位點(diǎn);最后,使用五折交叉驗(yàn)證評(píng)估模型的性能。結(jié)果獨(dú)立測(cè)試集 上的結(jié)果表明,在識(shí)別RNA結(jié)構(gòu)中的Mg,+位點(diǎn)上,RNAMg優(yōu)于目前最先進(jìn)的方法。結(jié)論RNAMg可以 識(shí)別出RNA結(jié)構(gòu)中的M/+結(jié)合位點(diǎn),對(duì)理解RNA折疊、核酶催化反應(yīng)等各種關(guān)鍵生物學(xué)過(guò)程及相關(guān)疾 病的產(chǎn)生機(jī)制有重要意義。

 

Objective Ribonucleic acids ( RNA) play an important role in many life processes. They take part in almost all the aspects of gene transcription and translation. Magnesium ions ( Mg2+ ) are essential for RNA folding into stable tertiary structures and are often involved in the catalytic activity of ribozymes. Despite many RNA structures have been resolved experimentally, accurately detecting them still faces many challenges experimentally. Three-dimensional convolutional neural network ( 3D - CNN) are capable of learning useful

features directly from raw data, and have been used in many structure-based prediction works. Therefore, this paper proposes a 3D - CNN based method for predicting Mg2+ binding sites in RNA structure, RNAMg. Methods Firstly, a database of RNA-Mg2+ binding sites (113 RNAs) is constructed by collecting RNA structures from PDB (protein data bank) database. Then, a local coordinate system is established for each binding site, the ambient microenvironment is represented as five ' channels' ( corresponding to atom types of carbon, oxygen, nitrogen and phosphorus and charge) ,and the tertiary structure of RNA is sent into the 3D-CNN model as a 3D image to predict the RNA-Mg2+ binding sites. In the end, the performance of the model is evaluated by 5-fold cross validation. Results Results on an independent test set show that RNAMg is superior to state-of-the-art methods in identifying Mg2+ binding sites in RNA structures. Conclusions RNAMg can identify the Mg2+ binding sites in RNA structures, which is of great significance in understanding various key biological processes such as RNA folding, ribozyme-catalyzed reactions and the generation mechanism of related diseases.

 

參考文獻(xiàn):

[1 ] Doudna JA, Cech TR. The chemical repertoire of natural ribozymes [J]. Nature, 2002,418 (6894) :222-228.

[2 ] Morris KV, Mattick JS. The rise of regulatory RNA [J]. Nature Reviews. Genetics,2014,15(6) :423—437.

[3 ] Bowman JC, Lenz TK, Hud NV, et al. Cations in charge: magnesium ions in RNA folding and catalysis [ J ]. Current Opinion in Structural Biology, 2012,22(3) :?262-272.

[4 ] Wang J, Xiao Y. Types and concentrations of metal ions affect local structure and dynamics of RNA [ J]. Physical Review E, 2016,94(4-1) :040401.

[5 ] Yamauchi T, Miyoshi D, Kubodera T, et al. Roles of Mg2+?in TPP—dependent riboswitch [ J ]. FEBS Letters, 2005,579 ( 12):?2583-2588.

[6 ] Schnabl J, Sigel RKO. Controlling ribozyme activity by metal ions [J ]. Current Opinion in Chemical Biology, 2010, 14 ( 2):?269-275.

[7 ] Herschlag D, Cech TR. Catalysis of RNA cleavage by the tetrahymena-thermophila ribozyme . 1. Kinetic description of the reaction of an RNA substrate complementary to the active-site [J]. Biochemistry,1990,29(44) :?10159-10171.

[8 ] Stellos K, Gatsiou A, Stamatelopoulos K, et al. Adenosine-to- inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation[ J] . Nature Medicine,2016,22( 10) :?1140—1150.

[9 ] Cruz-Le6n S, Schwierz N. Hofmeister series for metal-cation-RNA interactions: the interplay of binding affinity and exchange kinetics [J]. Langmuir, 2020,36 (21) :?5979-5989.

[10] Hu X,Dong Q,Yang J,et al. Recognizing metal and acid radical

ion-binding sites by integrating ab initio modeling with templatebased transferals[ J]. Bioinfbrmatics,2016,32(21) :3260-3269.

[11 ] Sfinchez-Aparicio JE, Tiessler-Sala L, Velasco-Cameros L, et al. BioMetAU: identifying metal-binding sites in proteins from backbone preorganization [ J ]. Journal of Chemical Information and Modeling,2021,61(l) :311-323.

[12]?Philips A, Milanowska K, Lach G, et al. MetalionRNA: computational predictor of metal-binding sites in RNA structures [J]. Bioinformatics,2012,28(2) : 198—205.

[13]?Wang K, Jian Y, Wang H, et al. RBind: computational network method to predict RNA binding sites[ J]. Bioinfbrmatics,2018, 34(18) :3131-3136.

[14]?Su H, Peng Z, Yang J. Recognition of small molecule-RNA binding sites using RNA sequence and structure [ J ]. Bioinfbrmatics,2021,37(1) :36-42.

[15]?Li J,Zhu W,Wang J,et al. RNA3DCNN:local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks [ J ]. PLoS Computational Biology, 2018, 14 (11):1-18.

[16]?Kozlovskii I, Popov P. Spatiotemporal identification of druggable binding sites using deep learning[ J] . Communications Biology, 2020,3(1):618.

[17]?Berman HM, Westbrook J, Feng Z, et aL The protein data bank [J]. Nucleic Acids Research,2000,28(1):235-242.

[18]?Gong S, Zhang C, Zhang Y. RNA-align: quick and accurate alignment of RNA 3D structures based on size-independent TM- scoreRNA [ J ]. Bioinformatics, 2019,35(21) : 4459—4461.

[19]?Chapman EG,Costantino DA,Rabe JL,et al. The structural basis of pathogenic subgenomic flavivirus RNA ( sfRNA) production [J]. Science,2014,344(6181) :307-310.

[20]?Correll CC,Munishkin A,Chan YL,et al. Crystal structure of the ribosomal RNA domain essential for binding elongation factors [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(23) :?13436-13441.

[21 ] Correll CC, Freeborn B, Moore PB, et al. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain [ J ]. CeU,1997,91(5) :705-712.

[22] Bonneau E, Legault P, NMR localization of divalent cations at the active site of the neurospora?VS ribozyme provides insights into RNA -metal-ion interactions [ J]. Biochemistry, 2014, 53 ( 3 );?579-590.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]