51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
決策樹算法應用于MIMIC-III數(shù)據(jù)庫的ICU患者急性腎損傷預測研究

Decision tree algorithm applied to MIMIC-III database for the prediction of acute kidney injury in ICU patients

作者: 高文鵬  呂海金  周瑯  郭圣文  
單位:華南理工大學材料科學與工程學院生物醫(yī)學工程系 (廣州 510006) <p>中山大學附屬第三醫(yī)院外科ICU (廣州510630)&nbsp;</p> <p>華南理工大學自動化科學與工程學院(廣州510640) 通信作者:郭圣文 。 E-mail: [email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 急性腎損傷;重癥監(jiān)護室;機器學習;風險預測;重要特征  
分類號:R318 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·6(609-617)
摘要:

目的急性腎損傷(acute kidney injury,AKI)是重癥監(jiān)護病房(intensive care unit,ICU)最常 見的并發(fā)癥和致死因素之一。準確預測具AKI風險的患者,明確與AKI發(fā)生相關(guān)的關(guān)鍵因素,可為臨 床決策與風險患者干預提供有效指導。方法采用公開的重癥監(jiān)護室數(shù)據(jù)庫MIMIC-III,提取30 020例 患者記錄(包括AKI患者17 222名,Non-AKI患者12798名),收集其住ICU期間基本信息、生理生化指 標、藥物使用、合并癥等臨床信息。將患者按4 : 1比例隨機劃分訓練集和獨立測試集,應用邏輯回歸、 隨機森林與LightGBM 3種機器學習方法,分別建立24 h、48 h與72 h 3個時間點的AKI預測模型,采用 十折交叉驗證法,對各種模型進行訓練與測試,預測患者是否發(fā)生AKI,并獲取重要特征。此外,利用24 h預測模型,在一周時間窗口內(nèi)對ICU患者進行每隔24h預測。結(jié)果3種學習模型中,LightGBM性能 最優(yōu),其24 h、48 h和72 h模型預測AKI的受試者工作特征曲線(receiver operator characteristic curve, ROC 曲線)下面積(area under curve, AUG)值分別為 0. 90.0. 88.0. 87,Fl 值分別為 0.91.0. 88,0. 86,在 每隔24 h預測時,提前1 d、2 d和3 d預測AKI的成功率分別為89%、83%、80%。已住院時長、體質(zhì)量、 白蛋白、收縮壓、碳酸氫鹽、葡萄糖、白細胞計數(shù)、體溫、舒張壓、血尿素氮等是預測ICU患者AKI的重要 特征,僅使用24個重要特征,模型仍能取得良好的預測性能。結(jié)論基于ICU患者的基本信息、生理生 化指標、藥物使用及合并癥等臨床信息,應用機器學習模型,可對其是否發(fā)生AKI進行多時間點的有效 預測,并明確其關(guān)鍵風險因素。

 

Objective Acute kidney injury ( AKI) is one of the most common complications and fatal factors in intensive care unit (ICU). Accurate prediction of AKI risk and identification of key factors related to AKI can provide effective guidance for clinical decision-making and intervention for patients with AKI risk. Methods A total of 30020 patients in ICU (including 17 222 AKI patients and 12 798 Non-AKI patients) were selected from the public database MIMIC-III in this study, and basic information, physiological and biochemical indicators, drug use, and comorbidity during their stay in ICU were collected. All patients were randomly divided into training sets and independent testing sets according to the ratio of 4 : 1, and logistic regression, random forest, and LightGBM were applied to construct models for AKI predication in three time points including 24 h, 48 h and 72 h, respectively. The 10-fold cross validation was used to train and validate various models to predict the occurrence of AKI,and obtain important features. Furthermore,24 h prediction models were used to predict AKI every 24 h during the 7-day window. Results LightGBM achieved the best performance with AUC values of 0. 90,0. 88,0. 87 for 24 h,48 h,and 72 h prediction,respectively,and Fl values were 0. 91,0. 88,and 0. 86. In prediction of every 24 h,the success rates of identifying AKI patients were 89% ,83%,and 80% in one day,two days and three days in advance, respectively. It was found that the length of stay in ICU, body weight, albumin, systolic blood pressure, bicarbonate, glucose, white blood cell count, body temperature, diastolic blood pressure and blood urea nitrogen played vital roles in predicting AKI for ICU patients. Using only 24 important features, the models could still achieve prominent prediction performance. Conclusions Based on basic information, physiological and biochemical indicators, drug use, and comorbidity, machine learning methods can be adopted to effectively predict AKI risk for ICU patients at several time points, and determine the dominant factors relative to AKI.

 

參考文獻:

[1 ] Lameire NH, Bagga A, Cruz D, et al. Acute kidney injury: an increasing global concern [J]. Lancet, 2013, 382 ( 9887 ):170-179.

[2 ] Bagshaw SM, George C, Gibney RTN, et al. A multi-center evaluation of early acute kidney injury in critically ill trauma patients[J]. Renal Failure,2008,30(6) :581 -589.

[3 ] Mizuno T, Sato W, Ishikawa K, et aL KDIGO ( kidney disease: improving global outcomes) criteria could be a useful outcome predictor of cisplatin-induced acute kidney injury[J]. Oncology, 2012,82(6):354-359.

[4 ] Eriksson M, Brattstrom 0, Martensson J, et al. Acute kidney injury following severe trauma: risk factors and long-term outcome [J]. Journal of Trauma and Acute Care Surgery, 2015,79(3): 407-412.

[5 ] Ostermarm M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup[J]. Critical Care,2016,20:299.

[6 ] Panagidis D, Nanas S, Kokkoris S. Biomarkers of acute kidney injury in a mixed ICU population, a narrative review [J]. Health & Research Journal, 2019,5(4):150.

[7 ] Rojas JC, Carey KA, Edelson DP ,et al. Predicting intensive care unit readmission with machine learning using electronic health record data[J]. Annals of the American Thoracic Society ,2018, 15(7):846-853.

[8 ] Haines RW, Lin SP, Hewson R, et al. Acute kidney injury in trauma patients admitted to critical care: development and validation of a diagnostic prediction model [J]. Scientific Reports ,2018,8:3665.

[9 ] Malhotra R, Kashani KB, Macedo E, et al. A risk prediction score for acute kidney injury in the intensive care unit[J]. Nephrology Dialysis Transplantation,2017,32(5) :814—822.

[10]?李千惠.基于機器學習的急性腎損傷預測及臨床應用優(yōu)化 [D].北京:北京交通大學,2019.

Li QH. Prediction of acute kidney injury and clinical application optimization based on machine learning [D]. Beijing; Beijing Jiaotong University ,2019.

[11]?張淵,馮聰,李開源,等.ICU患者急性腎損傷發(fā)生風險的 LightGBM預測模型[J].解放軍醫(yī)學院學報,2019,40(4): 316-320.

Zhang Y, Feng C, Li KY, et al. LightGBM model fbr predicting acute kidney injury risk in ICU patients [J]. Academic Journal of Chinese PLA Medical School,2019,40(4):316-320.

[12]?Zimmerman LP,Reyfinan PA,Smith A,et aL Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements [J]. BMC Medical Informatics and Decision Making,2019,19(Suppl 1) : 16.

[13]?Johnson A, Pollard TJ, Shen L, et al. MIMIC - III, a freely accessible critical care database [J] . Scientific Data, 2016 ( 3 ): 160035.

[14]?Peng C, Waitman LR, Yong H, et al. Predicting inpatient acute kidney injury over different time horizons: How early and accurate? [J]. AMIA... Annual Symposium Proceedings/ AMIA Symposium, 2018,2017 ( 2017 ):565—574.

[15]?van Houwelingen S. Ridge estimators in logistic regression [J]. Journal of the Royal Statistical Society Series C, 1992,41 ( 1):191-201.

[16]?Criminisi A, Shotton J, Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning[J]. Foundations and Trends in Computer Graphics and Vision, 2011,7 ( 2- 3): 81-227.

[17]?Ke G, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree [C] //NIPS,17: the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: NIPS ,2017,3149-3157.

[18]?Mallet ML. Pathophysiology of accidental hypothermia[J]. QJM, 2002,95(12) :775-785.

[19]?M6garbane B, Axler 0, Chary I, et al. Hypothermia with indoor occurrence is associated with a worse outcomef J]. Intensive Care Medicine,2000,26( 12):1843-1849.

[20]?Han SS, Ahn SY, Ryu J, et al. U -shape relationship of white blood cells with acute kidney injury and mortality in critically ill patients [ J ]. The Tohoku Journal of Experimental Medicine, 2014,232(3):177-185.

[21 ] Gujadhur A, Tiruvoipati R, Cole E, et al. Serum bicarbonate may independently predict acute kidney injury in critically ill patients: an observational study [ J ]. World Journal of Critical Care Medicine,2015,4(1) :71-76.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]