51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
生物可降解絲素蛋白在骨科中的應用與進展

Application and progress of biodegradable silk fibroin in orthopaedics

作者: 賈明鍛  閆景龍  
單位:哈爾濱醫(yī)科大學附屬第二醫(yī)院(哈爾濱150081)&nbsp; <p>通信作者:閆景龍。E-mail: [email protected]</p> <p>&nbsp;</p>
關鍵詞: 絲素蛋白;組織工程;骨腫瘤;骨缺損;骨感染  
分類號:R318. 08 <p>&nbsp;</p>
出版年·卷·期(頁碼):2021·40·6(629-634)
摘要:

組織工程的三要素分別是支架材料、種子細胞和生長因子,其中支架材料在組織工程中起 到關鍵的作用。骨組織工程中最常用支架材料有透明質酸、海藻酸鈉、殼聚糖、聚乳酸、聚氧基丙烯酸 酯、膠原蛋白和聚己內(nèi)酯等,但現(xiàn)階段以上材料在骨科臨床實際應用中都各自面臨問題,比如殼聚糖親 水性過強、降解速度快,海藻酸鈉、膠原蛋白力學性能差等,因此,尋求一種更合適的支架材料成為研究 的重點方向。絲素蛋白作為一種天然高分子材料,廣泛存在于自然界中,具有價格低、易獲取、可降解 性、低毒性的優(yōu)點。以絲素蛋白為材料的骨組織支架在骨科中發(fā)揮了巨大的作用,有望在未來給更多的 骨病患者帶來福音。本文綜述絲素蛋白的組成結構和理化性質,闡述了不同類型絲素蛋白支架在骨組 織修復中的應用,總結了絲素蛋白在治療骨腫瘤和預防骨感染領域的國內(nèi)外最新研究進展,并展望絲素 蛋白材料在骨科中的發(fā)展前景和應用趨勢,為絲素蛋白材料應用于生物醫(yī)學工程和臨床提供有利參考。

 

The three elements of tissue engineering are scaffold material, seed cell and growth factor. Scaffold material plays a key role in tissue engineering. Hyaluronic acid, sodium alginate, chitosan, polylactic acid, cyanoacrylate, collagen and polycaprolactone are the most commonly used scaffolds in bone tissue engineering. However, at this stage, the above scaffolds are facing their own problems in the clinical application of orthopedics, such as strong hydrophilicity and rapid degradation of chitosan, poor mechanical properties of sodium alginate and collagen, Therefore, to find a more suitable scaffold material has become the focus of research. Silk fibroin, as a kind of natural polymer material, widely exists in nature, with the advantages of low price, easy access, degradability and low toxicity. Silk fibroin based bone tissue scaffolds play an important role in orthopedics, which is expected to bring good news to more patients with bone diseases in the future. This paper reviews the composition, structure and physicochemical properties of silk fibroin, expounds the application of different types of silk fibroin scaffolds in bone tissue repair, summarizes the latest research progress of silk fibroin in the treatment of bone tumor and prevention of bone infection at home and abroad, and looks forward to the development prospect and application trend of silk fibroin materials in orthopedics, It provides a good reference for the application of silk fibroin in biomedical engineering and clinical.

 

參考文獻:

[1] Tang S, Shajudeen P, Tasciotti E, et al. Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo[J]. Scientific Reports, 2020,10(1):13646.

[2] Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects (review)[J]. Georgian Medical?News, 2018(282):44-49.

[3] Reddy L, Murugan D, Mullick M, et al. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J]. Current Stem Cell Research & Therory, 2020,15(2):111-134.

[4] Wan Z, Zhang P, Liu Y, et al. Four-dimensional bioprinting: current developments and applications in bone tissue engineering[J]. Acta Biomaterialia, 2020,101: 26-42.

[5] Xue J, Gao HL, Wang XY, et al. Bioinspired unidirectional silk fibroin-silver compound nanowire composite scaffold via interface-mediated in situ synthesis[J]. Angewandte Chemie International Edition, 2019,58(40): 14152-14156.

[6] Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review[J]. Polymers, 2019,11(12): 1933.

[7] Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. PNAS, 2019,116(43):21361-21368.

[8] Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications[J]. Journal of Materials Chemistry. B, 2019,7(44): 6890-6913.

[9] Bai X, Yuan W. Formation of natural silk and progress in artificial spinning[J]. Chinese Journal of Biotechnology, 2020,36(9): 1767-1778.

[10] Xu L, Weatherbee-Martin N, Liu XQ, et al. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly[J]. Small, 2019,15(12): e1805294.

[11] 趙亮. 基于雙層蛛絲蛋白血管支架和干細胞構建小直徑組織工程血管及其修復動脈缺損的研究[D]. 福州: 福建師范大學, 2014.

????Zhao L. Study on the construction of small diameter tissue engineering blood vessels and artery defect repair based on bilayer spider silk protein vascular scaffold and stem cells[D]. Fuzhou: Fujian Normal University, 2014.

[12] Chang Y, Sun X, Li Q, et al. Silk fibroin scaffold as a potential choice for female pelvic reconstruction: a study on the biocompatibility in abdominal wall, pelvic, and vagina[J]. Microscopy Research and Technology, 2017,80(3): 291-297.

[13] Zhuang Y, Zhang Q, Feng J, et al. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017,231(4): 337-346.

[14] Meng L, Shao C, Cui C, et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association[J]. ACS Applied Materials & Interfaces, 2020,12(1): 1628-1639.

[15] Wang Y, Fan S, Li Y, et al. Silk fibroin/sodium alginate composite porous materials with controllable degradation[J]. International Journal of Biological Macromolecules, 2020,150: 1314-1322.

[16] Chen W, Xu Y, Li H, et al. Tanshinone IIA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration[J]. ACS Applied Materials & Interfaces, 2020,12(19): 21470-21480.

[17] Singh YP,?Bhardwaj N, Mandal BB. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering[J]. ACS applied materials & interfaces, 2016,8(33): 21236-21249.

[18] Liu J, Yang B, Li M, et al. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering[J]. Carbohydrate Polymers, 2020,227: 115335.

[19] Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2[J]. Arthritis Research & Therory, 2021,23(1): 50.

[20] Annibali O, Petrucci MT, Santini D, et al. Alkaline phosphatase (alp) levels in multiple myeloma and solid cancers with bone lesions: Is there any difference?[J]. Journal of Bone Oncology, 2021,26: 100338.

[21] Burger D, Beaumont M, Rosenau T, et al. Porous silk fibroin/cellulose hydrogels for bone tissue engineering via a novel combined process based on sequential regeneration and porogen leaching[J]. Molecules, 2020,25(21): 5097.

[22] Kundu B, Brancato V, Oliveira JM, et al. Silk fibroin promotes mineralization of gellan gum hydrogels[J]. International Journal of Biological Macromolecules, 2020,153: 1328-1334.

[23] Yang Y, Feng Y, Qu R, et al. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering[J]. Stem Cell Research& Therory, 2020,11(1): 522.

[24] Gandhimathi C, Quek YJ, Ezhilarasu H, et al. Osteogenic differentiation of mesenchymal stem cells with silica-coated gold nanoparticles for bone tissue engineering[J]. International Journal of Molelular Sciences, 2019,20(20): 5135.

[25] Lawson S, Alwakwak AA, Rownaghi AA, et al. Gel-print-grow: a new way of 3D printing metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020,12(50): 56108-56117.

[26] Wang Q, Han G, Yan S, et al. 3D Printing of silk fibroin for biomedical applications[J]. Materials, 2019,12(3): 504.

[27] Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials, 2020,232:119679.

[28] Li Z, Wu N, Cheng J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration[J]. Theranostics, 2020,10(11):5090-5106.

[29] Ni T, Liu M, Zhang Y, et al. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair[J]. Bioconjugate Chemistry, 2020,31(8):1938-1947.

[30] Farokhi M, Mottaghitalab F, Reis RL, et al. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges[J]. Journal of Controlled Release, 2020,321:324-347.

[31] Subia?B,?Dey?T,?Sharma?S,?et?al.?Target?specific?delivery?of?anticancer?drug?in?silk?fibroin?based?3D?distribution?model?of?bone-breast?cancer?cells[J].?ACS?Applied?Materials &?Interfaces,?2015,7(4):2269-2279.?

[32] Pierantoni L, Ribeiro VP, Costa L, et al. Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research[J]. Macromolecular Bioscience, 2021,21(4): e2000425.

[33] 文強強, 劉巖, 蘇子龍,等. 金黃色葡萄球菌骨髓炎發(fā)病機制的研究進展[J]. 實用骨科雜志,2020,26(10):901-905.

[34] Ingoe HM, Coleman E, Eardley W, et al. Systematic review of systematic reviews for effectiveness of internal fixation for flail chest and rib fractures in adults[J]. BMJ Open, 2019,9(4): e023444.

[35] Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating[J]. Materials Science and Engineering: C, 2019,103: 109743.

[36] Wenhao Z, Zhang T, Yan J, et al. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis[J]. Acta Biomaterialia, 2020,116: 223-245.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]