51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
碳纖維/磁性納米顆粒/高分子共軸纖維復(fù)合支架構(gòu)建及其對成纖維細(xì)胞的作用研究

Fabrication of carbon fiber/magnetic nanoparticles/ coaxial polymerfiber composite scaffold and the effect on fibroblasts

作者: 劉青橋  郝博雅  劉文昊  童元建  周航  劉健  許海燕  
單位:中國醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所,北京協(xié)和醫(yī)學(xué)院基 礎(chǔ)學(xué)院(北京100005) <p>中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)院(北京100730)</p> <p>北京化工大學(xué)碳纖維及功能高分子教育部重點(diǎn)實(shí)驗(yàn)室(北京 100029)</p> <p>通信作者:許海燕,E-mail: xuhy@ pumc.edu.cn;劉健,E-mail : liujian@ ibms. pumc. edu. cn</p> <p>&nbsp;</p>
關(guān)鍵詞: 靜電紡絲;復(fù)合支架;碳纖維;磁性納米顆粒;成纖維細(xì)胞  
分類號:R318. 08 <p>&nbsp;</p>
出版年·卷·期(頁碼):2022·41·1(1-7)
摘要:

目的構(gòu)建碳纖維/磁性納米顆粒/高分子共軸纖維復(fù)合支架,研究支架的微觀形貌及理化 性質(zhì),初步評價支架對成纖維細(xì)胞生長的作用。方法采用共軸靜電紡絲技術(shù)制備纖維薄膜,芯層為聚 乳酸,殼層為明膠,各層均含有Fe3O4納米顆粒,在薄膜層中間加入碳纖維,得到復(fù)合支架。通過掃描電 子顯微鏡觀察電紡絲纖維及碳纖維的微觀結(jié)構(gòu),使用四探針測試儀、震蕩樣品磁強(qiáng)計、電子萬能試驗(yàn)機(jī) 和差示掃描量熱儀檢測支架的電導(dǎo)率、磁滯回線、彈性模量和熱行為。用激光共聚焦顯微鏡觀察成纖維 細(xì)胞形貌,利用細(xì)胞增殖-毒性檢測試劑盒評價細(xì)胞活性。結(jié)果電紡絲纖維呈無規(guī)纏結(jié)狀態(tài),碳纖維均 勻散布在電紡絲薄膜上。Fe3O4納米顆粒和碳纖維的加入均提高了復(fù)合纖維薄膜的電傳導(dǎo)性和彈性模 量,Fe3O4納米顆粒還賦予復(fù)合薄膜以超順磁響應(yīng)性。細(xì)胞在支架上能正常生長,與對照組相比,復(fù)合支 架上細(xì)胞的骨架蛋白F-actin表達(dá)水平顯著升高,且骨架纖維更具張力。結(jié)論復(fù)合支架獲得了超順磁 響應(yīng)性和導(dǎo)電性,并可顯著促進(jìn)成纖維細(xì)胞的生長。

 

Objective To fabricate carbon fiber/magnetic nanoparticles/coaxial polymer fiber composite scaffolds and investigate the morphology and physicochemical properties of the scaffolds, and evaluate the effect of scaffolds on the growth of fibroblasts. Methods The fiber films were fabricated by coaxial electrospinning with gelatin ( Gel) as shell layer and polylactic acid ( PLA) as core layer; meanwhile, Fe304 magnetic nanoparticles were added into the gelatin and PLA. Carbon fiber was placed in the middle of the filmsto obtain the composite scaffolds. The microstructure of electrospun fiber and carbon fiber was observed by scanning electron microscope (SEM). The conductivity,hysteresis loop,elastic modulus and thermal behavior of the scaffolds were measured by four-point probes, vibrating sample magnetometer, universal material testing machine and differential scanning calorimeter, respectively. The growth of mouse embryonic fibroblast cell lines ( NIH - 3T3 ) on the composite scaffolds was observed by confocal microscope,and cell viability was profiled by cell counting kit-8 (CCK-8) assay. Results The electrospun fibers were random tangled, and the carbon fibers were evenly distributed on the electrospun films. The addition of Fe3O4 magnetic nanoparticles and carbon fibers improved the electrical conductivity and elastic modulus of the composite fiber film,and Fe3O4 nanoparticles also endowed the composite films with superparamagnetism. Fibroblasts could grow and proliferate normally on different scaffolds. Compared with fibroblasts grown on PLA/Gel, the expression level of F-actin in fibroblasts grown on mag-PLA/Gel/CF was significantly increased, and the cytoskeleton was more tensive. Conclusions The composite scaffolds had both superparamagnetism and conductivity,which can significantly promote the growth of fibroblasts.

 

參考文獻(xiàn):

[1] Huang GY, Li F, Zhao X, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment [J]. Chemical Reviews, 2017, 117(20): 12764-12850.

[2] Chiquet M, Gelman L, Lutz R, et al. From mechanotransduction to extracellular matrix gene expression in fibroblasts [J]. Biochimica et Biophysica ?Acta, 2009, 1793(5): 911-920.

[3] Basoli V, Chaudary S, Cruciani S, et al. Mechanical stimulation of fibroblasts by extracorporeal shock waves: modulation of cell activation and proliferation through a transient proinflammatory milieu [J]. Cell Transplant, 2020, 29: 1-10.

[4] Spiller KL, Anfang RR, Spiller KJ, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds [J]. Biomaterials, 2014, 35(15): 4477-4488.

[5] Hao SS, Zhang Y, Meng J, et al. Integration of a superparamagnetic scaffold and magnetic field to enhance the wound-healing phenotype of fibroblasts [J]. ACS Applied Materials & Interfaces, 2018, 10(27): 22913-22923.

[6] Xie MH, Wang L, Guo BL, et al. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation [J]. Biomaterials, 2015, 71: 158-167.

[7] Wu YB, Wang L, Guo BL, et al. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering [J]. Biomaterials, 2016, 87: 18-31.

[8] Frank E, Steudle LM, Ingildeev D, et al. Carbon fibers: precursor systems, processing, structure, and properties [J]. Angewandte Chemie International Edition, 2014, 53(21): 5262-5298.

[9] Huang XS. Fabrication and properties of carbon fibers [J]. Materials, 2009, 2(4): 2369-2403.

[10] Forste IW, Ráli? ZA, Mckibbin B, et al. Biological reaction to carbon fiber implants the formation and structure of a carbon-induced neotendon [J]. Clinical Orthopaedics And Related Research, 1978, (131):299-307.

[11] Aragona J, Parsons JR, Alexander H, et al. Medial collateral ligament replacement with a partially absorbable tissue scaffold [J]. The American Journal of Sports Medicine, 1983, 11(4): 228-233.

[12] Srivastava VK, Rastogi A, Goel SC, et al. Implantation of tricalcium phosphate–polyvinyl alcohol filled carbon fibre reinforced polyester resin composites into bone marrow of rabbits [J]. Materials Science and Engineering?A, 2007, 448(1-2): 335-339.

[13] Wu FX, Gao AJ, Liu J, et al. High modulus conductive hydrogels enhance in vitro maturation and contractile function of primary cardiomyocytes for uses in drug screening [J]. Advanced Healthcare Materials, 2018, 7(24): e1800990.

[14] Wu K, Su DQ, Liu JM, et al. Magnetic nanoparticles in nanomedicine: a review of recent advances [J]. Nanotechnology, 2019, 30(50): 502003.

[15] Meng J, Zhang Y, Qi XJ, et al. Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells [J]. Nanoscale, 2010, 2(12): 2565-2569.

[16] Dong RN, Ma P X, Guo BL. Conductive biomaterials for muscle tissue engineering [J]. Biomaterials, 2020, 229: 119584.

[17] Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering [J]. Acta Biomaterialia, 2014, 10(6): 2341-2353.

[18] Luo ZT, Zheng KY, Xie JP. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications [J]. Chemical Communications (Cambridge, England), 2014, 50(40): 5143-5155.

[19] Ramón-Azcón J, Ahadian S, Estili M, et al. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers [J]. Advanced Materials, 2013, 25(29): 4028-4034.

[20] Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering [J]. Advanced Drug Delivery Reviews, 2016, 105(Pt B): 255-274.

[21] Sapir YL, Cohen S, Friedman G, et al. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds [J]. Biomaterials, 2012, 33(16): 4100-4109.

[22] Sapir YL, Polyak B, Cohen S. Cardiac tissue engineering in magnetically actuated scaffolds [J]. Nanotechnology, 2014, 25(1): 014009.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]