51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于稠殘U-net神經(jīng)網(wǎng)絡(luò)在定位CT圖像上自動(dòng)分割甲狀腺的研究

Study on automatic thyroid segmentation based on thick residue U-net neural network in localized CT images

作者: 袁美芳  楊毅  趙彪  文曉博  易三莉  
單位:昆明理工大學(xué)信息工程與自動(dòng)化學(xué)院(云南昆明 &nbsp;650500) 云南省腫瘤醫(yī)院放射治療科(云南昆明 &nbsp;650118) <p>通信作者:易三莉。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 卷積神經(jīng)網(wǎng)絡(luò);殘差塊;稠密連接;甲狀腺;CT圖像  
分類(lèi)號(hào):R318.04 <p>&nbsp;</p>
出版年·卷·期(頁(yè)碼):2022·41·1(42-48)
摘要:

目的 基于深度學(xué)習(xí)方法提出一種稠殘U-net神經(jīng)網(wǎng)絡(luò),探討其在放療定位CT上自動(dòng)預(yù)測(cè)甲狀腺輪廓的可行性,以減少放療中甲狀腺所受輻射劑量,降低甲減發(fā)生率。方法在U-net網(wǎng)絡(luò)中引入殘差機(jī)制和稠密連接機(jī)制建立一種稠殘U-net網(wǎng)絡(luò)。選取76名患者定位CT圖像的甲狀腺切片制作數(shù)據(jù)集,隨機(jī)劃分為訓(xùn)練集58例、驗(yàn)證集9例和測(cè)試集9例,對(duì)稠殘U-net進(jìn)行訓(xùn)練、驗(yàn)證和測(cè)試,得到稠殘U-net自動(dòng)預(yù)測(cè)甲狀腺的結(jié)果。通過(guò)戴斯相似性系數(shù)(Dice)、杰卡德相似系數(shù)(Jaccard))和豪斯多夫距離(HD)等評(píng)價(jià)指標(biāo)來(lái)評(píng)估其分割性能。結(jié)果 稠殘U-net預(yù)測(cè)甲狀腺的Dice值為0.86±0.09、Jaccard值為0.78±0.12、HD值為2.52±0.61,且預(yù)測(cè)的輪廓邊界與專(zhuān)家勾畫(huà)的標(biāo)準(zhǔn)邊界非常接近。結(jié)論 本文提出的稠殘U-net能在定位CT圖像上較為精準(zhǔn)地預(yù)測(cè)甲狀腺輪廓,且證明在卷積神經(jīng)網(wǎng)絡(luò)中引入殘差機(jī)制和稠密連接機(jī)制能提高其分割性能。

 

Objective Based on the deep learning method, a dense-residual U-net neural network is proposed to explore the feasibility of automatically predicting the contour of the thyroid on the CT images of radiotherapy positioning, so as to reduce the radiation dose to the thyroid during radiotherapy and reduce the incidence of hypothyroidism .Methods Residual mechanism and dense connection mechanism were introduced into U-net to establish dense- residual U-net neural network. The thyroid tissue structures of 76 patients were selected from localized CT images to make a data set, which were randomly divided into a training set of 58 patients, a verification set of 9 patients and a test set of 9 patients.The dense-residual U-net neural network was trained, verified and tested, and the thyroid contour predicted by neural network were obtained. The segment performance of dense-residual U-net were evaluated by dice, jaccard and HD.Results The thyroid’ s dice was 0.86±0.09, the jaccard was 0.78±0.12, and the HD was 2.52±0.61 by dense-residual U-net, and the predicted contour boundary was very close to the standard drawn by experts.Conclusions The dense-residual U-net proposed in this study can accurately predict the thyroid contour on localized CT images, and it is proved that the residual mechanism and dense connection mechanism can improve performance of convolutional neural network in medical image segmentation.

 

參考文獻(xiàn):

[1] 中華醫(yī)學(xué)會(huì)內(nèi)分泌學(xué)分會(huì).成人甲狀腺功能減退癥診治指南[J].中華內(nèi)分泌代謝雜志,2017,33(2):167-180.

[2] Ren L, Mei L, Zhang Y, et al. Nomogram for radiation-induced hypothyroidism prediction ?????in nasopharyngeal carcinoma after treatment[J]. The British Journal of Radiology,2017, 90(1070):20160686.

[3] R?njom M F, Brink C, Bentzen S M, et al. External validation of a normal tissue complication probability model for radiation-induced hypothyroidism in an independent cohort [J]. Acta Oncologica (Stockholm, Sweden), 2015, 54(9): 1301-1309.

[4] Hancock SL, Cox RS, Mcdougall IR. Thyroid diseases after treatment of Hodgkin's disease [J]. The New England journal of medicine, 1991, 325(9): 599-605.

[5] Diaz R, Jaboin JJ, Morales M, et al. Hypothyroidism as a consequence of intensity-modulated radiotherapy with concurrent taxane-based chemotherapy for locally advanced head-and-neck cancer [J]. International?Journal of Radiation Oncology, Biology, Physics, 2010, 77(2): 468-476.

[6] Dan CC, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860.

[7] 趙飛,劉杰.基于卷積神經(jīng)網(wǎng)絡(luò)和圖像顯著性的心臟CT圖像分割[J].北京生物醫(yī)學(xué)工程,2020,39(1):48-55

Zhao F, Liu J. Cardiac CT image segmentation based on convolutional neural network and image saliency[J].?Beijing Biomedical Engineering,2020, 39(1):48-55

[8] 鄧金城, 彭應(yīng)林, 劉常春,等.深度卷積神經(jīng)網(wǎng)絡(luò)在放射治療計(jì)劃圖像分割中的應(yīng)用[J].中國(guó)醫(yī)學(xué)物理學(xué)雜志,2018,35(6):621-627.

Deng JC, Peng YL, Liu CH?,et al.?Application of deep convolution neural network in radiotherapy planning image segmentation[J].?Chinese Journal of Medical Physics?,2018,35(6):621-627.

[9] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation [M]//Ronneberger O, Fischer P, Brox T, eds. Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234- 241.

[10] He K, Zhang X, Ren S,?et al.?Identity mappings in deep residual networks[C]// European Conference on Computer Vision.??Computer Vision – ECCV 2016. London :Springer,2016:630-645

[11] Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks[C]//?Conference?Proceedings.?Honolulu, HI, USA :IEEE Conference on Computer Vision and Pattern Recognition , 2017: 243-256

[12]文曉博,袁美芳,趙彪,等.基于GDL損失函數(shù)U-net神經(jīng)網(wǎng)絡(luò)在放療定位CT圖像上對(duì)甲狀腺分割的初步研究[J].山西醫(yī)科大學(xué)學(xué)報(bào),2021,52(3):350-355.

Wen XB,Yuan MF,Zhao B, et al.A preliminary study on thyroid segmentation by GDL-based U-net neural network in CT localization images for radiotherapy[J].?Journal of Shanxi Medical University,2021,52(3):350-355.

[13] 門(mén)闊,戴建榮.利用深度反卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)勾畫(huà)放療危及器官[J].中國(guó)醫(yī)學(xué)物理學(xué)雜志,2018,35(3):256-259.

Men K, Dai JR.?Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J]. Chinese Journal of Medical Physics,2018,35(3):256-259.

[14] 楊鑫,李學(xué)妍,張曉婷,等.基于自適應(yīng)Unet網(wǎng)絡(luò)的鼻咽癌放療危及器官自動(dòng)分割方法[J].南方醫(yī)科大學(xué)學(xué)報(bào),2020,40(11):1579-1586.?

Yang X, Li XY, Zhang XT, et al.?Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a selfadaptive Unet network[J]. Journal of Southern Medical University,2020,40(11):1579-1586.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]