[1] 中華醫(yī)學(xué)會(huì)內(nèi)分泌學(xué)分會(huì).成人甲狀腺功能減退癥診治指南[J].中華內(nèi)分泌代謝雜志,2017,33(2):167-180.
[2] Ren L, Mei L, Zhang Y, et al. Nomogram for radiation-induced hypothyroidism prediction ?????in nasopharyngeal carcinoma after treatment[J]. The British Journal of Radiology,2017, 90(1070):20160686.
[3] R?njom M F, Brink C, Bentzen S M, et al. External validation of a normal tissue complication probability model for radiation-induced hypothyroidism in an independent cohort [J]. Acta Oncologica (Stockholm, Sweden), 2015, 54(9): 1301-1309.
[4] Hancock SL, Cox RS, Mcdougall IR. Thyroid diseases after treatment of Hodgkin's disease [J]. The New England journal of medicine, 1991, 325(9): 599-605.
[5] Diaz R, Jaboin JJ, Morales M, et al. Hypothyroidism as a consequence of intensity-modulated radiotherapy with concurrent taxane-based chemotherapy for locally advanced head-and-neck cancer [J]. International?Journal of Radiation Oncology, Biology, Physics, 2010, 77(2): 468-476.
[6] Dan CC, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860.
[7] 趙飛,劉杰.基于卷積神經(jīng)網(wǎng)絡(luò)和圖像顯著性的心臟CT圖像分割[J].北京生物醫(yī)學(xué)工程,2020,39(1):48-55
Zhao F, Liu J. Cardiac CT image segmentation based on convolutional neural network and image saliency[J].?Beijing Biomedical Engineering,2020, 39(1):48-55
[8] 鄧金城, 彭應(yīng)林, 劉常春,等.深度卷積神經(jīng)網(wǎng)絡(luò)在放射治療計(jì)劃圖像分割中的應(yīng)用[J].中國(guó)醫(yī)學(xué)物理學(xué)雜志,2018,35(6):621-627.
Deng JC, Peng YL, Liu CH?,et al.?Application of deep convolution neural network in radiotherapy planning image segmentation[J].?Chinese Journal of Medical Physics?,2018,35(6):621-627.
[9] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation [M]//Ronneberger O, Fischer P, Brox T, eds. Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234- 241.
[10] He K, Zhang X, Ren S,?et al.?Identity mappings in deep residual networks[C]// European Conference on Computer Vision.??Computer Vision – ECCV 2016. London :Springer,2016:630-645
[11] Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks[C]//?Conference?Proceedings.?Honolulu, HI, USA :IEEE Conference on Computer Vision and Pattern Recognition , 2017: 243-256
[12]文曉博,袁美芳,趙彪,等.基于GDL損失函數(shù)U-net神經(jīng)網(wǎng)絡(luò)在放療定位CT圖像上對(duì)甲狀腺分割的初步研究[J].山西醫(yī)科大學(xué)學(xué)報(bào),2021,52(3):350-355.
Wen XB,Yuan MF,Zhao B, et al.A preliminary study on thyroid segmentation by GDL-based U-net neural network in CT localization images for radiotherapy[J].?Journal of Shanxi Medical University,2021,52(3):350-355.
[13] 門(mén)闊,戴建榮.利用深度反卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)勾畫(huà)放療危及器官[J].中國(guó)醫(yī)學(xué)物理學(xué)雜志,2018,35(3):256-259.
Men K, Dai JR.?Automatic segmentation of organs at risk in radiotherapy using deep deconvolutional neural network[J]. Chinese Journal of Medical Physics,2018,35(3):256-259.
[14] 楊鑫,李學(xué)妍,張曉婷,等.基于自適應(yīng)Unet網(wǎng)絡(luò)的鼻咽癌放療危及器官自動(dòng)分割方法[J].南方醫(yī)科大學(xué)學(xué)報(bào),2020,40(11):1579-1586.?
Yang X, Li XY, Zhang XT, et al.?Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a selfadaptive Unet network[J]. Journal of Southern Medical University,2020,40(11):1579-1586.
?
|