51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種基于加權非負最小二乘的蛋白質定量方法

A protein quantification method based on weighted non-negative least squares

作者: 方言  鄭浩然  
單位:中國科學技術大學計算機科學與技術學院(合肥 230027) <p>通信作者:鄭浩然。E-mail: [email protected]</p> <p>&nbsp;</p>
關鍵詞: 定量蛋白質組學;質譜;加權非負最小二乘;相對定量;無標記  
分類號:R318.04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2022·41·1(62-67)
摘要:

目的 提出一種綜合利用肽段信息的蛋白質定量方法WeQuant (weighted peptide-based protein quantification),以提高蛋白質定量的通量與準確度,特別是低豐度蛋白質。 方法 基于肽段和蛋白質的關系,按照肽段的豐度與來源對所有肽段進行加權,并利用肽段和蛋白質的等量關系建立加權非負最小二乘模型,從而得到蛋白質的相對豐度。 結果 與傳統(tǒng)蛋白質定量方法相比,WeQuant在實驗數(shù)據(jù)集上顯著增加了有效定量的蛋白質數(shù)量,并在不同豐度范圍均達到了更高的定量準確度。此外,WeQuant能夠有效定量未被其他方法報告的低豐度蛋白質。 結論 本文提出的基于加權非負最小二乘的模型能夠克服對高豐度肽段和唯一肽段的依賴,實現(xiàn)對不同豐度范圍的蛋白質進行準確定量。

 

Objective  A protein quantification method named WeQuant (weighted peptide-based protein quantification), which comprehensively utilizes peptide information, is proposed to improve the throughput and accuracy of protein quantification, especially for low-abundance proteins. Methods Based on the relationship between peptides and proteins, all peptides are weighted according to their abundances and sources, and a weighted non-negative least squares model is established using the equal relationship between peptides and proteins to obtain the relative abundance of proteins. Results Compared with traditional protein quantification methods, WeQuant significantly increases the number of effective quantitative proteins in the experimental data set, and achieves higher quantitative accuracy in different abundance ranges. In addition, WeQuant effectively quantified low-abundance proteins not reported by other methods. Conclusions The model based on weighted non-negative least squares proposed in this paper can overcome the dependence on high-abundance peptides and unique peptides, and achieve accurate quantification of proteins with different abundance ranges.

 

參考文獻:

[1]?Bian Y, Zheng R, Bayer FP, et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS[J]. Nature Communications, 2020, 11(1): 1-12.

[2]?Miller RM, Millikin RJ, Hoffmann CV, et al. Improved protein inference from multiple protease bottom-up mass spectrometry data[J]. Journal of Proteome Research, 2019, 18(9): 3429-3438.

[3]?Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing[J]. Annual Review of Analytical Chemistry, 2016, 9: 449-472.

[4]?Matzke MM, Brown JN, Gritsenko MA, et al. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments[J]. Proteomics, 2013, 13(3-4): 493-503.

[5]?Keshishian H, Addona T, Burgess M, et al. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution[J]. Molecular & Cellular Proteomics, 2007, 6(12):2212-2229.

[6]?Tiambeng TN, Roberts DS, Brown KA, et al. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum[J]. Nature Communications, 2020, 11(1): 1-12.

[7]?Berna M, Ackermann B. Increased throughput for low-abundance protein biomarker verification by liquid chromatography/tandem mass spectrometry[J]. Analytical Chemistry, 2009, 81(10): 3950-3956.

[8]?Polpitiya AD, Qian WJ, Jaitly N, et al. DAnTE: A statistical tool for quantitative analysis of -omics data[J]. Bioinformatics, 2008, 24(13): 1556-1558.

[9]?Grossmann J, Roschitzki B, Panse C, et al. Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods[J]. Journal of Proteomics, 2010, 73(9): 1740-1746.

[10]?Blein-Nicolas M, Xu H, de Vienne D, et al. Including shared peptides for estimating protein abundances: A significant improvement for quantitative proteomics[J]. Proteomics, 2012, 12(18): 2797-2801.

[11]?江丹陽, 鄭浩然. 針對無標簽鳥槍法蛋白質定量的新方法[J]. 北京生物醫(yī)學工程, 2018, 37(4): 351-355, 391.

Jiang DY, Zheng HR. A new approach to protein quantification in label-free shotgun proteomics[J]. Beijing Biomedical Engineering, 2018, 37(4): 351-355, 391.

[12]?Jacob L, Combes F, Burger T. PEPA test: fast and powerful differential analysis from relative quantitative proteomics data using shared peptides[J]. Biostatistics, 2019, 20(4): 632-647.

[13]?He B, Shi J, Wang X, et al. Label-free absolute protein quantification with data-independent acquisition[J]. Journal of Proteomics, 2019, 200: 51-59.

[14]?Dost B, Bandeira N, Li X, et al. Accurate mass spectrometry based protein quantification via shared peptides[J]. Journal of Computational Biology, 2012, 19(4): 337-348.

[15]?Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nature Protocols, 2016, 11(5): 993-1006.

[16]?Gerster S, Kwon T, Ludwig C, et al. Statistical Approach to Protein Quantification[J]. Molecular & Cellular Proteomics, 2014, 13(2): 666-677.

[17]?Navarro P, Kuharev J, Gillet LC, et al. A multicenter study benchmarks software tools for label-free proteome quantification[J]. Nature Biotechnology, 2016, 34(11): 1130-1136.

[18]?Collins BC, Hunter CL, Liu Y, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry[J]. Nature Communications, 2017, 8(1): 1-12.

[19]?Ludwig C, Gillet L, Rosenberger G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial[J]. Molecular Systems Biology, 2018, 14(8): e8126.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]