51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于拓?fù)渌惴ǖ母闻K腫瘤消融術(shù)前路徑規(guī)劃系統(tǒng)

A preoperative path planning system for liver tumor ablation based on topological algorithms

作者: 徐旭  朱文文  夏棟  巫彤寧  陳新華  李從勝  
單位:中國(guó)信息通信研究院泰爾終端實(shí)驗(yàn)室(北京100191) 浙江大學(xué)附屬第一醫(yī)院(杭州 310003) <p>通信作者:李從勝,高級(jí)工程師。E-mail:&nbsp;[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 肝腫瘤;計(jì)算機(jī)輔助;  消融針;  路徑規(guī)劃;  臨床約束條件  
分類號(hào):R318.04 <p>&nbsp;</p>
出版年·卷·期(頁(yè)碼):2022·41·2(111-117)
摘要:

目的 探索提高肝癌消融術(shù)路徑規(guī)劃的準(zhǔn)確性和肝癌消融術(shù)療效的方法。方法 研究結(jié)合病患個(gè)體解剖特征的多約束進(jìn)針路徑規(guī)劃模型,優(yōu)化符合病患病灶分布特征的術(shù)前方案。本文提出深度學(xué)習(xí)模型以提高患者腹部組織器官重建精度,并設(shè)計(jì)拓?fù)鋬?yōu)化算法進(jìn)行多約束進(jìn)針路徑規(guī)劃。結(jié)果 系統(tǒng)通過(guò)重建患者腹部多組織數(shù)字模型,分析病灶和周圍組織位置關(guān)系,制定滿足臨床條件的進(jìn)針路徑。結(jié)論 本文所提出的肝腫瘤消融術(shù)前路徑規(guī)劃,可實(shí)現(xiàn)融合病患個(gè)體特征的可行手術(shù)穿刺方案制定,臨床40例肝腫瘤患者術(shù)后增強(qiáng)影像顯示病灶均完全消融,技術(shù)有效率達(dá)100%。

 

Objective Explore ways to improve the accuracy of ablation pathway planning and the efficacy of ablation for hepatocellular carcinoma. Methods A multi-constrained approach path planning model incorporating individual patient anatomical features is investigated to optimize a preoperative plan that matches the patient's lesion distribution characteristics. This paper proposes a deep learning model to improve the accuracy of the patient's abdominal tissue and organ reconstruction, and designs a topology optimization algorithm for multi-constrained approach path planning. Results By reconstructing a multi-tissue digital model of the patient's abdomen, the system analyses the relationship between the location of the lesion and the surrounding tissues and develops a needle path that meets the clinical conditions. Conclusions The preoperative pathway planning for liver tumor ablation proposed in this paper enables the development of a feasible surgical puncture plan that incorporates individual patient characteristics. 40 patients with liver tumors were completely ablated on postoperative enhanced imaging, with a technical efficiency of 100%.

 

參考文獻(xiàn):

[1]?Siegel RL, Miller KD, Jemal A, et al.?Cancer Statistics, 2019?[J]. CA: A Cancer Journal for Clinicians, 2019,?69(1): 7–34.

[2]?Guo A,?Pomenti S,?Wattacheril J.?Health disparities in screening, diagnosis, and treatment of hepatocellular carcinoma?[J]. Clinical?Liver Disease(Hoboken),?2021, 17 (5): 353–358.

[3]?陳敏山, 陳敏華, 葉勝龍,等.原發(fā)性肝癌局部消融治療的專家共識(shí)[J].臨床腫瘤學(xué)雜志,2011,16(1):?70-73.

[4]?張睿,周著黃,吳薇薇,等.肝腫瘤熱消融治療穿刺路徑規(guī)劃算法研究綜述[J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2020, 46(11):1300-1314.

Zhang R, Zhou ZH, Wu WW,?et al. Review of needle?trajectory planning algorithms for?liver tumor?thermal ablation[J]. Journal of Beijing University of Technology, 2020, 46(11):?1300-1314.

[5]?Chu KF, Dupuy?DE.?Thermal ablation of tumours: biological mechanisms and advances in therapy. [J]. Nature Reviews Cancer, 2014, 14: 199-208.

[6]?Li S,?Yao J,?Navab N.?Guest Editorial: special issue on spine imaging, image-based modeling, and image guided intervention[J]. IEEE Transactions on Medical Imaging, 2015, 34 (8): 1625–1626.

[7]?Butz T, Warfield SK, Tuncali K, et al. Pre and intra-operative planning and simulation of percutaneous tumor ablation?[M]//?Medical Image Computing and Computer- Assisted Intervention?– MICCAI 2000. Lecture Notes in Computer Science.?Berlin : Springer, Berlin, Heidelberg,?2000,?1935: 317-326.?

[8]?Schumann C, Rieder C, Haase S, et al. Interactive access path exploration for planning of needle-based interventions [C]//?Proceedings of the CURAC Annual Meeting. La Clusaz: CEUR, 2013: 103-106.

[9]?Li C,?Yao G,?Xu X,?et al. DCSegNet: deep learning framework based on divide-and-conquer method for liver segmentation[J]. IEEE Access, 2020,?8: 146838–14846.

[10]?Zhang Y,?Pan X,?Li C,?et al. 3D liver and tumor segmentation with CNNs based on region and distance metrics[J]. Applied Sciences, 2020, 10 (11): 3794.

[11]?Xia D, Xu X, Zhang?Y. Segmentation and Reconstruction of Abdominal Multi-Tissues Based on Multiple Algorithms and Networks[J]. Journal of Physics: Conference Series, 2021,?1920: 012060.

[12]?Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation [M]// 2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA: IEEE Press, 2016: 565-571.

[13]?Karimi D, Salcudean SE.?Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks[J].?IEEE Transactions on Medical Imaging, 2020, 39(2): 499–513.

[14]?Xue Y, Tang H, Qiao Z, et al. Shape-aware organ segmentation by predicting signed distance maps[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020, 34(7):?12565–12572.

[15]?Schumann C, Bieberstein J, Braunewell S, et al. Visualization support for the planning of hepatic needle placement [J]. International Journal of Computer Assisted Radiology and Surgery, 2012, 7: 191-197.

Schumann C, Rieder C, Haase S,?et al.?Interactive access path exploration for planning of needle-based interventions[C]//?Proceedings of the CURAC Annual Meeting. La Clusaz, FR:?CURAC,?2013: 103-106.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]