51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于經(jīng)驗(yàn)?zāi)B(tài)分解的超聲零差K成像評(píng)估肝纖維化研究

Ultrasonic evaluation of hepatic fibrosis with homodyned K imaging based on empirical mode decomposition

作者: 張奇宇  吳水才  崔博翔  周著黃  
單位:北京工業(yè)大學(xué)環(huán)境與生命學(xué)部(北京 100124) <p>臺(tái)灣長庚大學(xué)醫(yī)學(xué)院(中國臺(tái)灣桃園&nbsp;&nbsp;33302)</p> <p>通信作者:周著黃。副研究員。E-mail:&nbsp;[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 肝纖維化;超聲;背散射;經(jīng)驗(yàn)?zāi)B(tài)分解;零差K分布  
分類號(hào):R318.04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2022·41·2(125-133)
摘要:

目的 為提高超聲零差K成像評(píng)估肝纖維化的性能,提出基于經(jīng)驗(yàn)?zāi)B(tài)分解的超聲背散射零差K成像評(píng)估肝纖維化方法,利用經(jīng)驗(yàn)?zāi)B(tài)分解技術(shù),消除肝實(shí)質(zhì)等噪聲信號(hào)對(duì)肝纖維化信號(hào)的影響。方法 首先,將采集到的43例臨床肝纖維化的超聲背散射信號(hào)(F0 = 14, F1 = 10, F2 = 6, F3 = 2, F4 = 11)進(jìn)行經(jīng)驗(yàn)?zāi)B(tài)分解,然后分別將分解后的第一本征模態(tài)函數(shù)和第二本征模態(tài)函數(shù)經(jīng)包絡(luò)檢測(cè)、滑動(dòng)窗口、零差K模型參數(shù)估算等處理,計(jì)算得到感興趣區(qū)域內(nèi)的零差K模型參數(shù)k和α矩陣,通過掃描變換得到零差K參數(shù)圖像,最后采用參數(shù)k和α對(duì)肝纖維化進(jìn)行評(píng)估。結(jié)果 采用經(jīng)驗(yàn)?zāi)B(tài)分解技術(shù)提高了超聲零差K成像診斷肝纖維化的性能。參數(shù)k在診斷肝纖維化≥F1即有無肝纖維化時(shí)提高較為明顯,平均受試者工作特征曲線下面積提高至0.68,參數(shù)α在診斷肝纖維化程度≥F1時(shí),平均受試者工作特征曲線下面積提高至0.82。結(jié)論 經(jīng)驗(yàn)?zāi)B(tài)分解技術(shù)有效減少了肝實(shí)質(zhì)等非目標(biāo)背散射信號(hào)對(duì)肝纖維信號(hào)的影響,提高了超聲零差K成像檢測(cè)肝纖維化的性能,并且在判別有無肝纖維化時(shí)性能最佳;在肝纖維化評(píng)估效果方面,參數(shù)α優(yōu)于參數(shù)k。

 

Objective To improve the performance of ultrasound homodyned K imaging in the evaluation of liver fibrosis, in this study, ultrasonic backscattering homodyned K imaging based on empirical mode decomposition was proposed for assessment of liver fibrosis. The empirical mode decomposition technique was used to eliminate the influence of noise signals such as liver parenchyma on hepatic fibrosis signals. The effect of liver fibrosis assessment before and after empirical mode decomposition was compared. Methods The ultrasonic backscattering signals collected from 43 cases of clinical liver fibrosis (F0 = 14, F1 = 10, F2 = 6, F3 = 2, F4 = 11) were decomposed by empirical mode decomposition. Then, the decomposed first intrinsic mode function and second intrinsic mode function signals were processed by envelope detection, sliding window, and homodyned K model parameter estimation. Thus, the homodyned K model parameters k and α matrices were estimated within the regions of interest. Finally, the homodyned K parametric image was obtained by digital scan conversion, Finally, parameters k and α were used for evaluation of liver fibrosis. Results The results showed that the performance of ultrasonic homodyned K imaging in the diagnosis of liver fibrosis was improved by using the empirical mode decomposition technique. Parameter k significantly increased the performance when diagnosing liver fibrosis ≥ F1, and the average area under the receiver operating characteristic curve increased to 0.68. Parameter α yielded an average AUC of 0.82 when diagnosing liver fibrosis ≥ F1. Conclusions The empirical mode decomposition technique effectively reduced the influence of non-target backscattering signals such as liver parenchyma on liver fiber signals. It improved the performance of ultrasonic homodyned K imaging in detecting liver fibrosis, and had the best performance in determining whether there is liver fibrosis. Parameter α was better than parameter k in the ultrasonic evaluation of liver fibrosis.

 

參考文獻(xiàn):

[1]?Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. Journal of Hepatology, 2019, 70(1): 151-171.

[2]?Zheng R, Qu C, Zhang S, et al. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030[J]. Chinese Journal of Cancer Research, 2018, 30(6): 571-579.

[3]?Bravo AA, Sheth SG, Chopra S.?Liver biopsy[J]. New England Journal of Medicine, 2001, 344(7): 495-500.

[4]?Bedossa P, Dargère D, Paradis V, et al. Sampling variability of liver fibrosis in chronic hepatitis C[J]. Hepatology, 2003, 38(6): 1449-1457.

[5]?Destrempes F, Cloutier G. A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope[J]. Ultrasound in Medicine and?Biology, 2010, 36(7): 1037-1051.

[6]?Zhou Z, Gao A, Zhang Q, et al. Ultrasound backscatter envelope statistics parametric imaging for liver fibrosis characterization: a?review[J]. Ultrasonic Imaging, 2020, 42(2): 92-109.

[7]?Zhou Z, Wu W, Wu S, et al. A review of ultrasound tissue characterization with mean scatterer spacing[J]. Ultrasonic Imaging, 2017, 39(5): 263-282.

[8]?歐陽亞麗, 周著黃, 吳水才, 等. 超聲零差K分布模型仿真研究[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(2): 119-125.

Ouyang YL, Zhou ZH, Wu SC, et al. Simulation study on ultrasound homodyned-K distribution model[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(2): 119-125.

[9]?Oelze ML, Mamou J. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(2): 336-351.

[10]?Cristea A, Collier N, Franceschini E, et al. Quantitative assessment of media concentration using the homodyned K distribution[J]. Ultrasonics, 2020, 101: 105986.

[11]?Zhou Z, Wu S, Wang CY, et al. Monitoring radiofrequency ablation using real-time ultrasound Nakagami imaging combined with frequency and temporal compounding techniques[J]. PLoS One, 2015, 10(2): e0118030.

[12]?Zhang S, Shang S, Han Y, et al. Ex vivo and in vivo monitoring and characterization of thermal lesions by high-Intensity focused ultrasound and microwave ablation using ultrasonic Nakagami imaging[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1701-1710.

[13]?Zhou Z, Zhang Q, Wu W, et al. Hepatic steatosis assessment using ultrasound homodyned-K parametric imaging: the effects of estimators[J]. Quantitative Imaging in Medicine and Surgery, 2019, 9(12): 1932-1947.

[14]?Tsai YW, Zhou Z, Gong CSA, et al. Ultrasound detection of liver fibrosis in individuals with hepatic steatosis using the homodyned K distribution[J]. Ultrasound in Medicine & Biology, 2021, 47(1): 84-94.

[15]?Hao X, Bruce CJ, Pislaru C, et al. Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned K distribution[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49(11): 1530-1542.

[16]?Mamou J, Coron A, Oelze ML, et al. Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes[J]. Ultrasound in Medicine & Biology, 2011, 37(3): 345-357.

[17]?Byra M, Nowicki A, Wróblewska-Piotrzkowska H, et al. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters[J]. Medical Physics, 2016, 43(10): 5561.

[18]?Roy-Cardinal MH, Destrempes F, Soulez G, et al. Assessment of carotid artery plaque components with machine learning classification using homodyned-K parametric maps and elastograms[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66(3): 493-504.

[19]?Zhou Z, Tai DI, Wan YL, et al. Hepatic steatosis assessment with ultrasound small-window entropy imaging[J]. Ultrasound in Medicine & Biology, 2018, 44(7): 1327-1340.

[20]?Zhou Z, Fang J, Cristea A, et al. Value of homodyned K distribution in ultrasound parametric imaging of hepatic steatosis: an animal study[J]. Ultrasonics, 2020, 101: 106001.

[21]?張奇宇,吳水才,崔博翔,等. 超聲背散射零差K成像評(píng)估肝纖維化[C]//2019年上海-西安聲學(xué)學(xué)會(huì)第六屆聲學(xué)學(xué)術(shù)交流會(huì)議論文集.上海:上海-西安聲學(xué)學(xué)會(huì),2019:12-15.

[22]?Zhou Z, Wu S, Lin MY, et al. Three-dimensional visualization of ultrasound backscatter statistics by window-modulated compounding Nakagami imaging[J]. Ultrasonic Imaging, 2018, 40(3): 171-189.

[23]?Son JY, Lee JY, Yi NJ, et al. Hepatic steatosis: assessment with acoustic structure quantification of US imaging[J]. Radiology, 2016, 278(1): 257-264.

[24]?Huang N, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A?Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

[25]?Tsui PH, Chang CC, Huang NE. Noise-modulated empirical mode decomposition[J]. Advances in Adaptive Data Analysis, 2010, 2(1): 25-37.

[26]?劉備, 董胡, 錢盛友. 基于經(jīng)驗(yàn)?zāi)B(tài)分解與小波分析的超聲信號(hào)降噪方法[J]. 測(cè)試技術(shù)學(xué)報(bào), 2018, 32(5): 422-428.

??Liu B, Dong H, Qian SY. Ultrasonic signal denoising method based on empirical mode decomposition?and wavelet analysis[J]. Journal of Test and Measurement Technology, 2018, 32(5): 422-428.

[27]?Dutt V, Greenleaf JF. Ultrasound echo envelope analysis using a homodyned K distribution signal model[J]. Ultrasonic Imaging, 1994, 16(4): 265-287.

[28]?Destrempes F, Porée J, Cloutier G. Estimation method of the homodyned K-distribution based on the mean intensity and two log-moments[J]. SIAM Journal on Imaging Sciences, 2013, 6(3): 1499-1530.

[29]?Castera L. Noninvasive methods to assess liver disease in patients with hepatitis B or C[J]. Gastroenterology, 2012, 142(6): 1293-1302.e4.

[30]?Liang XE, Chen YP, Zhang Q, et al. Dynamic evaluation of liver stiffness measurement to improve diagnostic accuracy of liver cirrhosis in patients with chronic hepatitis B acute exacerbation[J]. Journal of Viral Hepatitis, 2011, 18(12): 884-891.

[31]?Thiele M, Detlefsen S, M?ller LS, et al. Transient and 2-dimensional shear-wave elastography provide comparable assessment of alcoholic liver fibrosis and cirrhosis[J]. Gastroenterology, 2016, 150(1): 123-133.

[32]?Smith AD, Porter KK, Elkassem AA, et al. Current imaging techniques for noninvasive staging of hepatic fibrosis[J]. American Journal of Roentgenology, 2019, 213(1): 77-89.

[33]?Kr?mer C, Jaspers N, Nierhoff D, et al. Acoustic structure quantification ultrasound software proves imprecise in assessing liver fibrosis or cirrhosis in parenchymal liver diseases[J]. Ultrasound in Medicine & Biology, 2014, 40(12): 2811-2818.

[34]?Karlas T, Berger J, Garnov N, et al. Estimating steatosis and fibrosis: comparison of acoustic structure quantification with established techniques[J]. World Journal of Gastroenterology, 2015, 21(16): 4894-4902.

[35]?Tsui PH, Ma HY, Zhou Z, et al. Window-modulated compounding Nakagami imaging for ultrasound tissue characterization[J]. Ultrasonics, 2014, 54(6): 1448-1459.

[36]?Tsui PH, Wan YL, Tai DI, et al. Effects of estimators on ultrasound Nakagami imaging in visualizing the change in the backscattered statistics from a Rayleigh distribution to a pre-Rayleigh distribution[J]. Ultrasound in Medicine & Biology, 2015, 41(8): 2240-2251.

[37]?Tsui PH, Ho MC, Tai DI, et al. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis[J]. Scientific Reports, 2016, 6: 33075.

[38]?Higuchi T, Hirata S, Yamaguchi T, et al. Quantitative evaluation of liver fibrosis using multi-Rayleigh model with hypoechoic component[J]. Japanese Journal of Applied Physics, 2013, 52(7S): 07HF19.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]